Identifier
-
Mp00035:
Dyck paths
—to alternating sign matrix⟶
Alternating sign matrices
Mp00006: Alternating sign matrices —gyration⟶ Alternating sign matrices
St000067: Alternating sign matrices ⟶ ℤ
Values
[1,0] => [[1]] => [[1]] => 0
[1,0,1,0] => [[1,0],[0,1]] => [[0,1],[1,0]] => 1
[1,1,0,0] => [[0,1],[1,0]] => [[1,0],[0,1]] => 0
[1,0,1,0,1,0] => [[1,0,0],[0,1,0],[0,0,1]] => [[0,0,1],[0,1,0],[1,0,0]] => 3
[1,0,1,1,0,0] => [[1,0,0],[0,0,1],[0,1,0]] => [[0,1,0],[1,0,0],[0,0,1]] => 1
[1,1,0,0,1,0] => [[0,1,0],[1,0,0],[0,0,1]] => [[1,0,0],[0,0,1],[0,1,0]] => 1
[1,1,0,1,0,0] => [[0,1,0],[1,-1,1],[0,1,0]] => [[1,0,0],[0,1,0],[0,0,1]] => 0
[1,1,1,0,0,0] => [[0,0,1],[1,0,0],[0,1,0]] => [[0,1,0],[0,0,1],[1,0,0]] => 2
[1,0,1,0,1,0,1,0] => [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]] => [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]] => 5
[1,0,1,0,1,1,0,0] => [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]] => [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]] => 3
[1,0,1,1,0,0,1,0] => [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]] => [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]] => 2
[1,0,1,1,0,1,0,0] => [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]] => [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]] => 1
[1,0,1,1,1,0,0,0] => [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]] => [[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]] => 4
[1,1,0,0,1,0,1,0] => [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]] => [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]] => 3
[1,1,0,0,1,1,0,0] => [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]] => [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]] => 1
[1,1,0,1,0,0,1,0] => [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]] => [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]] => 1
[1,1,0,1,0,1,0,0] => [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]] => [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]] => 0
[1,1,0,1,1,0,0,0] => [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]] => [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]] => 2
[1,1,1,0,0,0,1,0] => [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]] => [[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]] => 4
[1,1,1,0,0,1,0,0] => [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]] => [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]] => 2
[1,1,1,0,1,0,0,0] => [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]] => [[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]] => 5
[1,1,1,1,0,0,0,0] => [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]] => [[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]] => 3
[1,0,1,0,1,0,1,0,1,0] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]] => [[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]] => 7
[1,0,1,0,1,0,1,1,0,0] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]] => [[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]] => 5
[1,0,1,0,1,1,0,0,1,0] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]] => [[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0]] => 4
[1,0,1,0,1,1,0,1,0,0] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]] => [[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]] => 3
[1,0,1,0,1,1,1,0,0,0] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]] => [[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,1,0,0]] => 6
[1,0,1,1,0,0,1,0,1,0] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]] => 4
[1,0,1,1,0,0,1,1,0,0] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]] => 2
[1,0,1,1,0,1,0,0,1,0] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]] => 2
[1,0,1,1,0,1,0,1,0,0] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]] => 1
[1,0,1,1,0,1,1,0,0,0] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0]] => 3
[1,0,1,1,1,0,0,0,1,0] => [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]] => [[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,0,1],[0,1,-1,1,0],[0,0,1,0,0]] => 6
[1,0,1,1,1,0,0,1,0,0] => [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]] => [[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,0,0,1]] => 4
[1,0,1,1,1,0,1,0,0,0] => [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]] => [[0,0,1,0,0],[0,1,-1,0,1],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0]] => 7
[1,0,1,1,1,1,0,0,0,0] => [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]] => [[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,1,0],[0,1,-1,0,1],[0,0,1,0,0]] => 5
[1,1,0,0,1,0,1,0,1,0] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]] => 5
[1,1,0,0,1,0,1,1,0,0] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]] => 3
[1,1,0,0,1,1,0,0,1,0] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]] => 2
[1,1,0,0,1,1,0,1,0,0] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]] => 1
[1,1,0,0,1,1,1,0,0,0] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,1,0,0]] => 4
[1,1,0,1,0,0,1,0,1,0] => [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]] => 3
[1,1,0,1,0,0,1,1,0,0] => [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]] => 1
[1,1,0,1,0,1,0,0,1,0] => [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]] => 1
[1,1,0,1,0,1,0,1,0,0] => [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]] => 0
[1,1,0,1,0,1,1,0,0,0] => [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0]] => 2
[1,1,0,1,1,0,0,0,1,0] => [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,1,-1,1,0],[0,0,1,0,0]] => 4
[1,1,0,1,1,0,0,1,0,0] => [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]] => 2
[1,1,0,1,1,0,1,0,0,0] => [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0]] => 5
[1,1,0,1,1,1,0,0,0,0] => [[0,1,0,0,0],[1,-1,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,-1,0,1],[0,0,1,0,0]] => 3
[1,1,1,0,0,0,1,0,1,0] => [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]] => [[0,1,0,0,0],[0,0,0,1,0],[1,-1,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]] => 6
[1,1,1,0,0,0,1,1,0,0] => [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]] => [[0,1,0,0,0],[0,0,0,1,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]] => 4
[1,1,1,0,0,1,0,0,1,0] => [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]] => [[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0]] => 3
[1,1,1,0,0,1,0,1,0,0] => [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]] => [[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]] => 2
[1,1,1,0,0,1,1,0,0,0] => [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]] => [[0,1,0,0,0],[0,0,0,1,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,1,0,0]] => 5
[1,1,1,0,1,0,0,0,1,0] => [[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]] => [[0,0,0,1,0],[0,1,0,0,0],[1,-1,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]] => 7
[1,1,1,0,1,0,0,1,0,0] => [[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]] => [[0,0,0,1,0],[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]] => 5
[1,1,1,0,1,0,1,0,0,0] => [[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]] => [[0,0,0,0,1],[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0]] => 7
[1,1,1,0,1,1,0,0,0,0] => [[0,0,1,0,0],[1,0,-1,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]] => [[0,0,0,1,0],[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,1,0,0]] => 6
[1,1,1,1,0,0,0,0,1,0] => [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]] => [[0,1,0,0,0],[0,0,1,0,0],[1,-1,0,0,1],[0,1,-1,1,0],[0,0,1,0,0]] => 5
[1,1,1,1,0,0,0,1,0,0] => [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]] => [[0,1,0,0,0],[0,0,1,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,0,0,1]] => 3
[1,1,1,1,0,0,1,0,0,0] => [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]] => [[0,1,0,0,0],[0,0,0,0,1],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0]] => 6
[1,1,1,1,0,1,0,0,0,0] => [[0,0,0,1,0],[1,0,0,-1,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]] => [[0,1,0,0,0],[0,0,1,0,0],[1,-1,0,1,0],[0,1,-1,0,1],[0,0,1,0,0]] => 4
[1,1,1,1,1,0,0,0,0,0] => [[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]] => [[0,0,0,1,0],[0,1,0,-1,1],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0]] => 7
[1,0,1,0,1,0,1,0,1,0,1,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]] => [[0,0,1,0,0,0],[0,1,-1,1,0,0],[1,-1,1,-1,1,0],[0,1,-1,1,-1,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]] => 9
[1,0,1,0,1,0,1,0,1,1,0,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]] => [[0,0,1,0,0,0],[0,1,-1,1,0,0],[1,-1,1,-1,1,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1]] => 7
[1,0,1,0,1,0,1,1,0,0,1,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]] => [[0,0,1,0,0,0],[0,1,-1,1,0,0],[1,-1,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]] => 6
[1,0,1,0,1,0,1,1,0,1,0,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => [[0,0,1,0,0,0],[0,1,-1,1,0,0],[1,-1,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]] => 5
[1,0,1,0,1,0,1,1,1,0,0,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]] => [[0,0,1,0,0,0],[0,1,-1,1,0,0],[1,-1,1,-1,1,0],[0,1,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0]] => 8
[1,0,1,0,1,1,0,0,1,0,1,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]] => [[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]] => 6
[1,0,1,0,1,1,0,0,1,1,0,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]] => [[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]] => 4
[1,0,1,0,1,1,0,1,0,0,1,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]] => [[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]] => 4
[1,0,1,0,1,1,0,1,0,1,0,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => [[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]] => 3
[1,0,1,0,1,1,0,1,1,0,0,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]] => [[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1],[0,0,0,1,0,0]] => 5
[1,0,1,0,1,1,1,0,0,0,1,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1]] => [[0,0,1,0,0,0],[0,1,-1,1,0,0],[1,-1,1,0,0,0],[0,1,-1,0,0,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]] => 8
[1,0,1,0,1,1,1,0,0,1,0,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,1,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => [[0,0,1,0,0,0],[0,1,-1,1,0,0],[1,-1,1,0,0,0],[0,1,-1,0,1,0],[0,0,1,0,0,0],[0,0,0,0,0,1]] => 6
[1,0,1,0,1,1,1,0,1,0,0,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,1,0,-1,1],[0,0,0,1,0,0],[0,0,0,0,1,0]] => [[0,0,1,0,0,0],[0,1,-1,1,0,0],[1,-1,1,-1,0,1],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0]] => 9
[1,0,1,0,1,1,1,1,0,0,0,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]] => [[0,0,1,0,0,0],[0,1,-1,1,0,0],[1,-1,1,0,0,0],[0,1,-1,0,1,0],[0,0,1,-1,0,1],[0,0,0,1,0,0]] => 7
[1,0,1,1,0,0,1,0,1,0,1,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,-1,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]] => 6
[1,0,1,1,0,0,1,0,1,1,0,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1]] => 4
[1,0,1,1,0,0,1,1,0,0,1,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]] => 3
[1,0,1,1,0,0,1,1,0,1,0,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]] => 2
[1,0,1,1,0,0,1,1,1,0,0,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0]] => 5
[1,0,1,1,0,1,0,0,1,0,1,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]] => 4
[1,0,1,1,0,1,0,0,1,1,0,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]] => 2
[1,0,1,1,0,1,0,1,0,0,1,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]] => 2
[1,0,1,1,0,1,0,1,0,1,0,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]] => 1
[1,0,1,1,0,1,0,1,1,0,0,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1],[0,0,0,1,0,0]] => 3
[1,0,1,1,0,1,1,0,0,0,1,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,0,1,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1]] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]] => 5
[1,0,1,1,0,1,1,0,0,1,0,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,0,1,0],[0,0,1,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,1,0,0,0],[0,0,0,0,0,1]] => 3
[1,0,1,1,0,1,1,0,1,0,0,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,0,1,0],[0,0,1,0,-1,1],[0,0,0,1,0,0],[0,0,0,0,1,0]] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0]] => 6
[1,0,1,1,0,1,1,1,0,0,0,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,0,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,1,-1,0,1],[0,0,0,1,0,0]] => 4
[1,0,1,1,1,0,0,0,1,0,1,0] => [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]] => [[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,0,1,0],[0,1,-1,1,-1,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]] => 8
[1,0,1,1,1,0,0,0,1,1,0,0] => [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]] => [[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,0,1,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1]] => 6
[1,0,1,1,1,0,0,1,0,0,1,0] => [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]] => [[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]] => 5
[1,0,1,1,1,0,0,1,0,1,0,0] => [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => [[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]] => 4
[1,0,1,1,1,0,0,1,1,0,0,0] => [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]] => [[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,0,1,0],[0,1,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0]] => 7
[1,0,1,1,1,0,1,0,0,0,1,0] => [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,-1,1,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1]] => [[0,0,1,0,0,0],[0,1,-1,0,1,0],[1,-1,1,0,0,0],[0,1,-1,1,-1,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]] => 9
[1,0,1,1,1,0,1,0,0,1,0,0] => [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,-1,1,0],[0,0,1,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => [[0,0,1,0,0,0],[0,1,-1,0,1,0],[1,-1,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1]] => 7
[1,0,1,1,1,0,1,0,1,0,0,0] => [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,-1,1,0],[0,0,1,0,-1,1],[0,0,0,1,0,0],[0,0,0,0,1,0]] => [[0,0,1,0,0,0],[0,1,-1,0,0,1],[1,-1,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0]] => 9
[1,0,1,1,1,0,1,1,0,0,0,0] => [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,-1,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]] => [[0,0,1,0,0,0],[0,1,-1,0,1,0],[1,-1,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0]] => 8
>>> Load all 196 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The inversion number of the alternating sign matrix.
If we denote the entries of the alternating sign matrix as $a_{i,j}$, the inversion number is defined as
$$\sum_{i > k}\sum_{j < \ell} a_{i,j}a_{k,\ell}.$$
When restricted to permutation matrices, this gives the usual inversion number of the permutation.
If we denote the entries of the alternating sign matrix as $a_{i,j}$, the inversion number is defined as
$$\sum_{i > k}\sum_{j < \ell} a_{i,j}a_{k,\ell}.$$
When restricted to permutation matrices, this gives the usual inversion number of the permutation.
Map
gyration
Description
The gyration of an alternating sign matrix.
This is the alternating sign matrix obtained by applying the gyration action to the height function.
Gyration is a bijective map on ASMs defined in [1].
One may turn an ASM into a square ice configuration (Figure 1), then turning that into a colored graph with boundary conditions (Figure 2). Then fully convert the ASM into a colored graph (Figure 4). The gyration is then defined using this colored graph.
This is the alternating sign matrix obtained by applying the gyration action to the height function.
Gyration is a bijective map on ASMs defined in [1].
One may turn an ASM into a square ice configuration (Figure 1), then turning that into a colored graph with boundary conditions (Figure 2). Then fully convert the ASM into a colored graph (Figure 4). The gyration is then defined using this colored graph.
Map
to alternating sign matrix
Description
Return the Dyck path as an alternating sign matrix.
This is an inclusion map from Dyck words of length $2n$ to certain
$n \times n$ alternating sign matrices.
This is an inclusion map from Dyck words of length $2n$ to certain
$n \times n$ alternating sign matrices.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!