Identifier
-
Mp00101:
Dyck paths
—decomposition reverse⟶
Dyck paths
Mp00035: Dyck paths —to alternating sign matrix⟶ Alternating sign matrices
St000067: Alternating sign matrices ⟶ ℤ
Values
[1,0] => [1,0] => [[1]] => 0
[1,0,1,0] => [1,1,0,0] => [[0,1],[1,0]] => 1
[1,1,0,0] => [1,0,1,0] => [[1,0],[0,1]] => 0
[1,0,1,0,1,0] => [1,1,1,0,0,0] => [[0,0,1],[1,0,0],[0,1,0]] => 2
[1,0,1,1,0,0] => [1,1,0,1,0,0] => [[0,1,0],[1,-1,1],[0,1,0]] => 2
[1,1,0,0,1,0] => [1,1,0,0,1,0] => [[0,1,0],[1,0,0],[0,0,1]] => 1
[1,1,0,1,0,0] => [1,0,1,1,0,0] => [[1,0,0],[0,0,1],[0,1,0]] => 1
[1,1,1,0,0,0] => [1,0,1,0,1,0] => [[1,0,0],[0,1,0],[0,0,1]] => 0
[1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]] => 3
[1,0,1,0,1,1,0,0] => [1,1,1,0,1,0,0,0] => [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]] => 3
[1,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]] => 3
[1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,0,0] => [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]] => 3
[1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,0] => [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]] => 3
[1,1,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0] => [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]] => 2
[1,1,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0] => [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]] => 2
[1,1,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]] => 2
[1,1,0,1,0,1,0,0] => [1,0,1,1,1,0,0,0] => [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]] => 2
[1,1,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0] => [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]] => 2
[1,1,1,0,0,0,1,0] => [1,1,0,0,1,0,1,0] => [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]] => 1
[1,1,1,0,0,1,0,0] => [1,0,1,1,0,0,1,0] => [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]] => 1
[1,1,1,0,1,0,0,0] => [1,0,1,0,1,1,0,0] => [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]] => 1
[1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]] => 0
[1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => [[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]] => 4
[1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,0,1,0,0,0,0] => [[0,0,0,1,0],[1,0,0,-1,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]] => 4
[1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,0] => [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]] => 4
[1,0,1,0,1,1,0,1,0,0] => [1,1,1,0,1,1,0,0,0,0] => [[0,0,1,0,0],[1,0,-1,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]] => 4
[1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,0,0] => [[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]] => 4
[1,0,1,1,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]] => 4
[1,0,1,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,0,0] => [[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]] => 4
[1,0,1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,0] => [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]] => 4
[1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,1,1,0,0,0,0] => [[0,1,0,0,0],[1,-1,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]] => 4
[1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,0,0,0] => [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]] => 4
[1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]] => 4
[1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,1,0,0] => [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]] => 4
[1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,0,1,1,0,0,0] => [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]] => 4
[1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0] => [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]] => 4
[1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0,1,0] => [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]] => 3
[1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,1,0,0,0,1,0] => [[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]] => 3
[1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0,1,0] => [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]] => 3
[1,1,0,0,1,1,0,1,0,0] => [1,1,0,1,1,0,0,0,1,0] => [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]] => 3
[1,1,0,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,0,1,0] => [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]] => 3
[1,1,0,1,0,0,1,0,1,0] => [1,1,1,0,0,0,1,1,0,0] => [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]] => 3
[1,1,0,1,0,0,1,1,0,0] => [1,1,0,1,0,0,1,1,0,0] => [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]] => 3
[1,1,0,1,0,1,0,0,1,0] => [1,1,0,0,1,1,1,0,0,0] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]] => 3
[1,1,0,1,0,1,0,1,0,0] => [1,0,1,1,1,1,0,0,0,0] => [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]] => 3
[1,1,0,1,0,1,1,0,0,0] => [1,0,1,1,1,0,1,0,0,0] => [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]] => 3
[1,1,0,1,1,0,0,0,1,0] => [1,1,0,0,1,1,0,1,0,0] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]] => 3
[1,1,0,1,1,0,0,1,0,0] => [1,0,1,1,1,0,0,1,0,0] => [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]] => 3
[1,1,0,1,1,0,1,0,0,0] => [1,0,1,1,0,1,1,0,0,0] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]] => 3
[1,1,0,1,1,1,0,0,0,0] => [1,0,1,1,0,1,0,1,0,0] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]] => 3
[1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0,1,0] => [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]] => 2
[1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0,1,0] => [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]] => 2
[1,1,1,0,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]] => 2
[1,1,1,0,0,1,0,1,0,0] => [1,0,1,1,1,0,0,0,1,0] => [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]] => 2
[1,1,1,0,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]] => 2
[1,1,1,0,1,0,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]] => 2
[1,1,1,0,1,0,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]] => 2
[1,1,1,0,1,0,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]] => 2
[1,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,1,0,1,0,0] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]] => 2
[1,1,1,1,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,0] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]] => 1
[1,1,1,1,0,0,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]] => 1
[1,1,1,1,0,0,1,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]] => 1
[1,1,1,1,0,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]] => 1
[1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]] => 0
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [[0,0,0,0,0,1],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]] => 5
[1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => [[0,0,0,0,1,0],[1,0,0,0,-1,1],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]] => 5
[1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => [[0,0,0,0,1,0],[1,0,0,0,0,0],[0,1,0,0,-1,1],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]] => 5
[1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => [[0,0,0,1,0,0],[1,0,0,-1,0,1],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]] => 5
[1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => [[0,0,0,1,0,0],[1,0,0,-1,1,0],[0,1,0,0,-1,1],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]] => 5
[1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => [[0,0,0,0,1,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,-1,1],[0,0,0,1,0,0],[0,0,0,0,1,0]] => 5
[1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,1,1,0,1,0,0,1,0,0,0] => [[0,0,0,1,0,0],[1,0,0,-1,1,0],[0,1,0,0,0,0],[0,0,1,0,-1,1],[0,0,0,1,0,0],[0,0,0,0,1,0]] => 5
[1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => [[0,0,0,1,0,0],[1,0,0,0,0,0],[0,1,0,-1,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]] => 5
[1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => [[0,0,1,0,0,0],[1,0,-1,0,0,1],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]] => 5
[1,0,1,0,1,1,0,1,1,0,0,0] => [1,1,1,0,1,1,0,1,0,0,0,0] => [[0,0,1,0,0,0],[1,0,-1,0,1,0],[0,1,0,0,-1,1],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]] => 5
[1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,1,0,1,0,0,0] => [[0,0,0,1,0,0],[1,0,0,0,0,0],[0,1,0,-1,1,0],[0,0,1,0,-1,1],[0,0,0,1,0,0],[0,0,0,0,1,0]] => 5
[1,0,1,0,1,1,1,0,0,1,0,0] => [1,1,1,0,1,1,0,0,1,0,0,0] => [[0,0,1,0,0,0],[1,0,-1,0,1,0],[0,1,0,0,0,0],[0,0,1,0,-1,1],[0,0,0,1,0,0],[0,0,0,0,1,0]] => 5
[1,0,1,0,1,1,1,0,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [[0,0,1,0,0,0],[1,0,-1,1,0,0],[0,1,0,-1,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]] => 5
[1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [[0,0,1,0,0,0],[1,0,-1,1,0,0],[0,1,0,-1,1,0],[0,0,1,0,-1,1],[0,0,0,1,0,0],[0,0,0,0,1,0]] => 5
[1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => [[0,0,0,0,1,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => 5
[1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,1,1,0,1,0,0,0,1,0,0] => [[0,0,0,1,0,0],[1,0,0,-1,1,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => 5
[1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,1,0,0] => [[0,0,0,1,0,0],[1,0,0,0,0,0],[0,1,0,-1,1,0],[0,0,1,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => 5
[1,0,1,1,0,0,1,1,0,1,0,0] => [1,1,1,0,1,1,0,0,0,1,0,0] => [[0,0,1,0,0,0],[1,0,-1,0,1,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => 5
[1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => [[0,0,1,0,0,0],[1,0,-1,1,0,0],[0,1,0,-1,1,0],[0,0,1,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => 5
[1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => [[0,0,0,1,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]] => 5
[1,0,1,1,0,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,1,0,0,0] => [[0,0,1,0,0,0],[1,0,-1,1,0,0],[0,1,0,0,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]] => 5
[1,0,1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => [[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,0,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]] => 5
[1,0,1,1,0,1,0,1,0,1,0,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [[0,1,0,0,0,0],[1,-1,0,0,0,1],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]] => 5
[1,0,1,1,0,1,0,1,1,0,0,0] => [1,1,0,1,1,1,0,1,0,0,0,0] => [[0,1,0,0,0,0],[1,-1,0,0,1,0],[0,1,0,0,-1,1],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]] => 5
[1,0,1,1,0,1,1,0,0,0,1,0] => [1,1,1,0,0,1,1,0,1,0,0,0] => [[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,0,1,0],[0,0,1,0,-1,1],[0,0,0,1,0,0],[0,0,0,0,1,0]] => 5
[1,0,1,1,0,1,1,0,0,1,0,0] => [1,1,0,1,1,1,0,0,1,0,0,0] => [[0,1,0,0,0,0],[1,-1,0,0,1,0],[0,1,0,0,0,0],[0,0,1,0,-1,1],[0,0,0,1,0,0],[0,0,0,0,1,0]] => 5
[1,0,1,1,0,1,1,0,1,0,0,0] => [1,1,0,1,1,0,1,1,0,0,0,0] => [[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,0,-1,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]] => 5
[1,0,1,1,0,1,1,1,0,0,0,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => [[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,0,-1,1,0],[0,0,1,0,-1,1],[0,0,0,1,0,0],[0,0,0,0,1,0]] => 5
[1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => [[0,0,0,1,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => 5
[1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,0,1,0,0] => [[0,0,1,0,0,0],[1,0,-1,1,0,0],[0,1,0,0,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => 5
[1,0,1,1,1,0,0,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,1,0,0] => [[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,0,1,0],[0,0,1,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => 5
[1,0,1,1,1,0,0,1,0,1,0,0] => [1,1,0,1,1,1,0,0,0,1,0,0] => [[0,1,0,0,0,0],[1,-1,0,0,1,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => 5
[1,0,1,1,1,0,0,1,1,0,0,0] => [1,1,0,1,1,0,1,0,0,1,0,0] => [[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,0,-1,1,0],[0,0,1,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => 5
[1,0,1,1,1,0,1,0,0,0,1,0] => [1,1,1,0,0,1,0,1,1,0,0,0] => [[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]] => 5
[1,0,1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,1,0,0,1,1,0,0,0] => [[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,0,0,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]] => 5
[1,0,1,1,1,0,1,0,1,0,0,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,-1,0,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]] => 5
[1,0,1,1,1,0,1,1,0,0,0,0] => [1,1,0,1,0,1,1,0,1,0,0,0] => [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,-1,0,1,0],[0,0,1,0,-1,1],[0,0,0,1,0,0],[0,0,0,0,1,0]] => 5
>>> Load all 251 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The inversion number of the alternating sign matrix.
If we denote the entries of the alternating sign matrix as $a_{i,j}$, the inversion number is defined as
$$\sum_{i > k}\sum_{j < \ell} a_{i,j}a_{k,\ell}.$$
When restricted to permutation matrices, this gives the usual inversion number of the permutation.
If we denote the entries of the alternating sign matrix as $a_{i,j}$, the inversion number is defined as
$$\sum_{i > k}\sum_{j < \ell} a_{i,j}a_{k,\ell}.$$
When restricted to permutation matrices, this gives the usual inversion number of the permutation.
Map
decomposition reverse
Description
This map is recursively defined as follows.
The unique empty path of semilength $0$ is sent to itself.
Let $D$ be a Dyck path of semilength $n > 0$ and decompose it into $1 D_1 0 D_2$ with Dyck paths $D_1, D_2$ of respective semilengths $n_1$ and $n_2$ such that $n_1$ is minimal. One then has $n_1+n_2 = n-1$.
Now let $\tilde D_1$ and $\tilde D_2$ be the recursively defined respective images of $D_1$ and $D_2$ under this map. The image of $D$ is then defined as $1 \tilde D_2 0 \tilde D_1$.
The unique empty path of semilength $0$ is sent to itself.
Let $D$ be a Dyck path of semilength $n > 0$ and decompose it into $1 D_1 0 D_2$ with Dyck paths $D_1, D_2$ of respective semilengths $n_1$ and $n_2$ such that $n_1$ is minimal. One then has $n_1+n_2 = n-1$.
Now let $\tilde D_1$ and $\tilde D_2$ be the recursively defined respective images of $D_1$ and $D_2$ under this map. The image of $D$ is then defined as $1 \tilde D_2 0 \tilde D_1$.
Map
to alternating sign matrix
Description
Return the Dyck path as an alternating sign matrix.
This is an inclusion map from Dyck words of length $2n$ to certain
$n \times n$ alternating sign matrices.
This is an inclusion map from Dyck words of length $2n$ to certain
$n \times n$ alternating sign matrices.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!