Identifier
-
Mp00012:
Binary trees
—to Dyck path: up step, left tree, down step, right tree⟶
Dyck paths
Mp00137: Dyck paths —to symmetric ASM⟶ Alternating sign matrices
St000067: Alternating sign matrices ⟶ ℤ
Values
[.,.] => [1,0] => [[1]] => 0
[.,[.,.]] => [1,0,1,0] => [[1,0],[0,1]] => 0
[[.,.],.] => [1,1,0,0] => [[0,1],[1,0]] => 1
[.,[.,[.,.]]] => [1,0,1,0,1,0] => [[1,0,0],[0,1,0],[0,0,1]] => 0
[.,[[.,.],.]] => [1,0,1,1,0,0] => [[1,0,0],[0,0,1],[0,1,0]] => 1
[[.,.],[.,.]] => [1,1,0,0,1,0] => [[0,1,0],[1,0,0],[0,0,1]] => 1
[[.,[.,.]],.] => [1,1,0,1,0,0] => [[0,1,0],[1,-1,1],[0,1,0]] => 2
[[[.,.],.],.] => [1,1,1,0,0,0] => [[0,0,1],[0,1,0],[1,0,0]] => 3
[.,[.,[.,[.,.]]]] => [1,0,1,0,1,0,1,0] => [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]] => 0
[.,[.,[[.,.],.]]] => [1,0,1,0,1,1,0,0] => [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]] => 1
[.,[[.,.],[.,.]]] => [1,0,1,1,0,0,1,0] => [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]] => 1
[.,[[.,[.,.]],.]] => [1,0,1,1,0,1,0,0] => [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]] => 2
[.,[[[.,.],.],.]] => [1,0,1,1,1,0,0,0] => [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]] => 3
[[.,.],[.,[.,.]]] => [1,1,0,0,1,0,1,0] => [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]] => 1
[[.,.],[[.,.],.]] => [1,1,0,0,1,1,0,0] => [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]] => 2
[[.,[.,.]],[.,.]] => [1,1,0,1,0,0,1,0] => [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]] => 2
[[[.,.],.],[.,.]] => [1,1,1,0,0,0,1,0] => [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]] => 3
[[.,[.,[.,.]]],.] => [1,1,0,1,0,1,0,0] => [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]] => 3
[[.,[[.,.],.]],.] => [1,1,0,1,1,0,0,0] => [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]] => 4
[[[.,.],[.,.]],.] => [1,1,1,0,0,1,0,0] => [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]] => 4
[[[.,[.,.]],.],.] => [1,1,1,0,1,0,0,0] => [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]] => 5
[[[[.,.],.],.],.] => [1,1,1,1,0,0,0,0] => [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]] => 6
[.,[.,[.,[.,[.,.]]]]] => [1,0,1,0,1,0,1,0,1,0] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]] => 0
[.,[.,[.,[[.,.],.]]]] => [1,0,1,0,1,0,1,1,0,0] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]] => 1
[.,[.,[[.,.],[.,.]]]] => [1,0,1,0,1,1,0,0,1,0] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]] => 1
[.,[.,[[.,[.,.]],.]]] => [1,0,1,0,1,1,0,1,0,0] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]] => 2
[.,[.,[[[.,.],.],.]]] => [1,0,1,0,1,1,1,0,0,0] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]] => 3
[.,[[.,.],[.,[.,.]]]] => [1,0,1,1,0,0,1,0,1,0] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]] => 1
[.,[[.,.],[[.,.],.]]] => [1,0,1,1,0,0,1,1,0,0] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]] => 2
[.,[[.,[.,.]],[.,.]]] => [1,0,1,1,0,1,0,0,1,0] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]] => 2
[.,[[[.,.],.],[.,.]]] => [1,0,1,1,1,0,0,0,1,0] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]] => 3
[.,[[.,[.,[.,.]]],.]] => [1,0,1,1,0,1,0,1,0,0] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]] => 3
[.,[[.,[[.,.],.]],.]] => [1,0,1,1,0,1,1,0,0,0] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]] => 4
[.,[[[.,.],[.,.]],.]] => [1,0,1,1,1,0,0,1,0,0] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]] => 4
[.,[[[.,[.,.]],.],.]] => [1,0,1,1,1,0,1,0,0,0] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]] => 5
[.,[[[[.,.],.],.],.]] => [1,0,1,1,1,1,0,0,0,0] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]] => 6
[[.,.],[.,[.,[.,.]]]] => [1,1,0,0,1,0,1,0,1,0] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]] => 1
[[.,.],[.,[[.,.],.]]] => [1,1,0,0,1,0,1,1,0,0] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]] => 2
[[.,.],[[.,.],[.,.]]] => [1,1,0,0,1,1,0,0,1,0] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]] => 2
[[.,.],[[.,[.,.]],.]] => [1,1,0,0,1,1,0,1,0,0] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]] => 3
[[.,.],[[[.,.],.],.]] => [1,1,0,0,1,1,1,0,0,0] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]] => 4
[[.,[.,.]],[.,[.,.]]] => [1,1,0,1,0,0,1,0,1,0] => [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]] => 2
[[.,[.,.]],[[.,.],.]] => [1,1,0,1,0,0,1,1,0,0] => [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]] => 3
[[[.,.],.],[.,[.,.]]] => [1,1,1,0,0,0,1,0,1,0] => [[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]] => 3
[[[.,.],.],[[.,.],.]] => [1,1,1,0,0,0,1,1,0,0] => [[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0]] => 4
[[.,[.,[.,.]]],[.,.]] => [1,1,0,1,0,1,0,0,1,0] => [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]] => 3
[[.,[[.,.],.]],[.,.]] => [1,1,0,1,1,0,0,0,1,0] => [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]] => 4
[[[.,.],[.,.]],[.,.]] => [1,1,1,0,0,1,0,0,1,0] => [[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]] => 4
[[[.,[.,.]],.],[.,.]] => [1,1,1,0,1,0,0,0,1,0] => [[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]] => 5
[[[[.,.],.],.],[.,.]] => [1,1,1,1,0,0,0,0,1,0] => [[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1]] => 6
[[.,[.,[.,[.,.]]]],.] => [1,1,0,1,0,1,0,1,0,0] => [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]] => 4
[[.,[.,[[.,.],.]]],.] => [1,1,0,1,0,1,1,0,0,0] => [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]] => 5
[[.,[[.,.],[.,.]]],.] => [1,1,0,1,1,0,0,1,0,0] => [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]] => 5
[[.,[[.,[.,.]],.]],.] => [1,1,0,1,1,0,1,0,0,0] => [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]] => 6
[[.,[[[.,.],.],.]],.] => [1,1,0,1,1,1,0,0,0,0] => [[0,1,0,0,0],[1,-1,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]] => 7
[[[.,.],[.,[.,.]]],.] => [1,1,1,0,0,1,0,1,0,0] => [[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]] => 5
[[[.,.],[[.,.],.]],.] => [1,1,1,0,0,1,1,0,0,0] => [[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]] => 6
[[[.,[.,.]],[.,.]],.] => [1,1,1,0,1,0,0,1,0,0] => [[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]] => 6
[[[[.,.],.],[.,.]],.] => [1,1,1,1,0,0,0,1,0,0] => [[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,-1,1],[0,0,0,1,0]] => 7
[[[.,[.,[.,.]]],.],.] => [1,1,1,0,1,0,1,0,0,0] => [[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]] => 7
[[[.,[[.,.],.]],.],.] => [1,1,1,0,1,1,0,0,0,0] => [[0,0,1,0,0],[0,1,-1,0,1],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0]] => 8
[[[[.,.],[.,.]],.],.] => [1,1,1,1,0,0,1,0,0,0] => [[0,0,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[1,0,-1,1,0],[0,0,1,0,0]] => 8
[[[[.,[.,.]],.],.],.] => [1,1,1,1,0,1,0,0,0,0] => [[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0]] => 9
[[[[[.,.],.],.],.],.] => [1,1,1,1,1,0,0,0,0,0] => [[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0]] => 10
[.,[.,[.,[.,[.,[.,.]]]]]] => [1,0,1,0,1,0,1,0,1,0,1,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]] => 0
[.,[.,[.,[.,[[.,.],.]]]]] => [1,0,1,0,1,0,1,0,1,1,0,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]] => 1
[.,[.,[.,[[.,.],[.,.]]]]] => [1,0,1,0,1,0,1,1,0,0,1,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]] => 1
[.,[.,[.,[[.,[.,.]],.]]]] => [1,0,1,0,1,0,1,1,0,1,0,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => 2
[.,[.,[.,[[[.,.],.],.]]]] => [1,0,1,0,1,0,1,1,1,0,0,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]] => 3
[.,[.,[[.,.],[.,[.,.]]]]] => [1,0,1,0,1,1,0,0,1,0,1,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]] => 1
[.,[.,[[.,.],[[.,.],.]]]] => [1,0,1,0,1,1,0,0,1,1,0,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]] => 2
[.,[.,[[.,[.,.]],[.,.]]]] => [1,0,1,0,1,1,0,1,0,0,1,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]] => 2
[.,[.,[[[.,.],.],[.,.]]]] => [1,0,1,0,1,1,1,0,0,0,1,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1]] => 3
[.,[.,[[.,[.,[.,.]]],.]]] => [1,0,1,0,1,1,0,1,0,1,0,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => 3
[.,[.,[[.,[[.,.],.]],.]]] => [1,0,1,0,1,1,0,1,1,0,0,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]] => 4
[.,[.,[[[.,.],[.,.]],.]]] => [1,0,1,0,1,1,1,0,0,1,0,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]] => 4
[.,[.,[[[.,[.,.]],.],.]]] => [1,0,1,0,1,1,1,0,1,0,0,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,-1,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]] => 5
[.,[.,[[[[.,.],.],.],.]]] => [1,0,1,0,1,1,1,1,0,0,0,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0]] => 6
[.,[[.,.],[.,[.,[.,.]]]]] => [1,0,1,1,0,0,1,0,1,0,1,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]] => 1
[.,[[.,.],[.,[[.,.],.]]]] => [1,0,1,1,0,0,1,0,1,1,0,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]] => 2
[.,[[.,.],[[.,.],[.,.]]]] => [1,0,1,1,0,0,1,1,0,0,1,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]] => 2
[.,[[.,.],[[.,[.,.]],.]]] => [1,0,1,1,0,0,1,1,0,1,0,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => 3
[.,[[.,.],[[[.,.],.],.]]] => [1,0,1,1,0,0,1,1,1,0,0,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]] => 4
[.,[[.,[.,.]],[.,[.,.]]]] => [1,0,1,1,0,1,0,0,1,0,1,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]] => 2
[.,[[.,[.,.]],[[.,.],.]]] => [1,0,1,1,0,1,0,0,1,1,0,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]] => 3
[.,[[[.,.],.],[.,[.,.]]]] => [1,0,1,1,1,0,0,0,1,0,1,0] => [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]] => 3
[.,[[[.,.],.],[[.,.],.]]] => [1,0,1,1,1,0,0,0,1,1,0,0] => [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]] => 4
[.,[[.,[.,[.,.]]],[.,.]]] => [1,0,1,1,0,1,0,1,0,0,1,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]] => 3
[.,[[.,[[.,.],.]],[.,.]]] => [1,0,1,1,0,1,1,0,0,0,1,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1]] => 4
[.,[[[.,.],[.,.]],[.,.]]] => [1,0,1,1,1,0,0,1,0,0,1,0] => [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]] => 4
[.,[[[.,[.,.]],.],[.,.]]] => [1,0,1,1,1,0,1,0,0,0,1,0] => [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1]] => 5
[.,[[[[.,.],.],.],[.,.]]] => [1,0,1,1,1,1,0,0,0,0,1,0] => [[1,0,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1]] => 6
[.,[[.,[.,[.,[.,.]]]],.]] => [1,0,1,1,0,1,0,1,0,1,0,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => 4
[.,[[.,[.,[[.,.],.]]],.]] => [1,0,1,1,0,1,0,1,1,0,0,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]] => 5
[.,[[.,[[.,.],[.,.]]],.]] => [1,0,1,1,0,1,1,0,0,1,0,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,0,1,0],[0,0,0,1,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]] => 5
[.,[[.,[[.,[.,.]],.]],.]] => [1,0,1,1,0,1,1,0,1,0,0,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,0,1,0],[0,0,0,1,-1,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]] => 6
[.,[[.,[[[.,.],.],.]],.]] => [1,0,1,1,0,1,1,1,0,0,0,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0]] => 7
[.,[[[.,.],[.,[.,.]]],.]] => [1,0,1,1,1,0,0,1,0,1,0,0] => [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => 5
[.,[[[.,.],[[.,.],.]],.]] => [1,0,1,1,1,0,0,1,1,0,0,0] => [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]] => 6
[.,[[[.,[.,.]],[.,.]],.]] => [1,0,1,1,1,0,1,0,0,1,0,0] => [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,1,-1,1,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]] => 6
[.,[[[[.,.],.],[.,.]],.]] => [1,0,1,1,1,1,0,0,0,1,0,0] => [[1,0,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,-1,1],[0,0,0,0,1,0]] => 7
>>> Load all 251 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The inversion number of the alternating sign matrix.
If we denote the entries of the alternating sign matrix as $a_{i,j}$, the inversion number is defined as
$$\sum_{i > k}\sum_{j < \ell} a_{i,j}a_{k,\ell}.$$
When restricted to permutation matrices, this gives the usual inversion number of the permutation.
If we denote the entries of the alternating sign matrix as $a_{i,j}$, the inversion number is defined as
$$\sum_{i > k}\sum_{j < \ell} a_{i,j}a_{k,\ell}.$$
When restricted to permutation matrices, this gives the usual inversion number of the permutation.
Map
to Dyck path: up step, left tree, down step, right tree
Description
Return the associated Dyck path, using the bijection 1L0R.
This is given recursively as follows:
This is given recursively as follows:
- a leaf is associated to the empty Dyck Word
- a tree with children $l,r$ is associated with the Dyck path described by 1L0R where $L$ and $R$ are respectively the Dyck words associated with the trees $l$ and $r$.
Map
to symmetric ASM
Description
The diagonally symmetric alternating sign matrix corresponding to a Dyck path.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!