Identifier
-
Mp00158:
Binary words
—alternating inverse⟶
Binary words
Mp00262: Binary words —poset of factors⟶ Posets
St000068: Posets ⟶ ℤ
Values
0 => 0 => ([(0,1)],2) => 1
1 => 1 => ([(0,1)],2) => 1
00 => 01 => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
01 => 00 => ([(0,2),(2,1)],3) => 1
10 => 11 => ([(0,2),(2,1)],3) => 1
11 => 10 => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
000 => 010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => 1
001 => 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 1
010 => 000 => ([(0,3),(2,1),(3,2)],4) => 1
011 => 001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 1
100 => 110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 1
101 => 111 => ([(0,3),(2,1),(3,2)],4) => 1
110 => 100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 1
111 => 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => 1
0010 => 0111 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8) => 1
0100 => 0001 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8) => 1
0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
0110 => 0011 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9) => 1
1001 => 1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9) => 1
1010 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
1011 => 1110 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8) => 1
1101 => 1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8) => 1
00101 => 01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10) => 1
01001 => 00011 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
01011 => 00001 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10) => 1
01101 => 00111 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
10010 => 11000 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
10100 => 11110 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10) => 1
10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
10110 => 11100 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
11010 => 10000 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10) => 1
010101 => 000000 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 1
101010 => 111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 1
0101010 => 0000000 => ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8) => 1
1010101 => 1111111 => ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8) => 1
01010101 => 00000000 => ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9) => 1
10101010 => 11111111 => ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9) => 1
010101010 => 000000000 => ([(0,9),(2,4),(3,2),(4,6),(5,3),(6,8),(7,5),(8,1),(9,7)],10) => 1
101010101 => 111111111 => ([(0,9),(2,4),(3,2),(4,6),(5,3),(6,8),(7,5),(8,1),(9,7)],10) => 1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of minimal elements in a poset.
Map
poset of factors
Description
The poset of factors of a binary word.
This is the partial order on the set of distinct factors of a binary word, such that $u < v$ if and only if $u$ is a factor of $v$.
This is the partial order on the set of distinct factors of a binary word, such that $u < v$ if and only if $u$ is a factor of $v$.
Map
alternating inverse
Description
Sends a binary word $w_1\cdots w_m$ to the binary word $v_1 \cdots v_m$ with $v_i = w_i$ if $i$ is odd and $v_i = 1 - w_i$ if $i$ is even.
This map is used in [1], see Definitions 3.2 and 5.1.
This map is used in [1], see Definitions 3.2 and 5.1.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!