Identifier
Values
[1,2] => 0 => 0 => ([(0,1)],2) => 1
[2,1] => 1 => 1 => ([(0,1)],2) => 1
[1,2,3] => 00 => 00 => ([(0,2),(2,1)],3) => 1
[1,3,2] => 01 => 01 => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[2,1,3] => 10 => 10 => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[2,3,1] => 01 => 01 => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[3,1,2] => 10 => 10 => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[3,2,1] => 11 => 11 => ([(0,2),(2,1)],3) => 1
[1,2,3,4] => 000 => 000 => ([(0,3),(2,1),(3,2)],4) => 1
[1,2,4,3] => 001 => 001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 1
[1,3,2,4] => 010 => 100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 1
[1,3,4,2] => 001 => 001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 1
[1,4,2,3] => 010 => 100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 1
[1,4,3,2] => 011 => 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 1
[2,1,3,4] => 100 => 010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => 1
[2,1,4,3] => 101 => 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => 1
[2,3,1,4] => 010 => 100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 1
[2,3,4,1] => 001 => 001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 1
[2,4,1,3] => 010 => 100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 1
[2,4,3,1] => 011 => 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 1
[3,1,2,4] => 100 => 010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => 1
[3,1,4,2] => 101 => 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => 1
[3,2,1,4] => 110 => 110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 1
[3,2,4,1] => 101 => 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => 1
[3,4,1,2] => 010 => 100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 1
[3,4,2,1] => 011 => 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 1
[4,1,2,3] => 100 => 010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => 1
[4,1,3,2] => 101 => 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => 1
[4,2,1,3] => 110 => 110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 1
[4,2,3,1] => 101 => 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => 1
[4,3,1,2] => 110 => 110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 1
[4,3,2,1] => 111 => 111 => ([(0,3),(2,1),(3,2)],4) => 1
[1,2,3,4,5] => 0000 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[1,2,3,5,4] => 0001 => 0001 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8) => 1
[1,2,4,3,5] => 0010 => 1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8) => 1
[1,2,4,5,3] => 0001 => 0001 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8) => 1
[1,2,5,3,4] => 0010 => 1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8) => 1
[1,2,5,4,3] => 0011 => 0011 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9) => 1
[1,3,4,2,5] => 0010 => 1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8) => 1
[1,3,4,5,2] => 0001 => 0001 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8) => 1
[1,3,5,2,4] => 0010 => 1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8) => 1
[1,3,5,4,2] => 0011 => 0011 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9) => 1
[1,4,3,2,5] => 0110 => 1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9) => 1
[1,4,5,2,3] => 0010 => 1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8) => 1
[1,4,5,3,2] => 0011 => 0011 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9) => 1
[1,5,3,2,4] => 0110 => 1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9) => 1
[1,5,4,2,3] => 0110 => 1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9) => 1
[1,5,4,3,2] => 0111 => 0111 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8) => 1
[2,3,4,1,5] => 0010 => 1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8) => 1
[2,3,4,5,1] => 0001 => 0001 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8) => 1
[2,3,5,1,4] => 0010 => 1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8) => 1
[2,3,5,4,1] => 0011 => 0011 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9) => 1
[2,4,3,1,5] => 0110 => 1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9) => 1
[2,4,5,1,3] => 0010 => 1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8) => 1
[2,4,5,3,1] => 0011 => 0011 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9) => 1
[2,5,3,1,4] => 0110 => 1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9) => 1
[2,5,4,1,3] => 0110 => 1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9) => 1
[2,5,4,3,1] => 0111 => 0111 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8) => 1
[3,4,2,1,5] => 0110 => 1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9) => 1
[3,4,5,1,2] => 0010 => 1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8) => 1
[3,4,5,2,1] => 0011 => 0011 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9) => 1
[3,5,2,1,4] => 0110 => 1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9) => 1
[3,5,4,1,2] => 0110 => 1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9) => 1
[3,5,4,2,1] => 0111 => 0111 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8) => 1
[4,3,2,1,5] => 1110 => 1110 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8) => 1
[4,5,2,1,3] => 0110 => 1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9) => 1
[4,5,3,1,2] => 0110 => 1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9) => 1
[4,5,3,2,1] => 0111 => 0111 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8) => 1
[5,3,2,1,4] => 1110 => 1110 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8) => 1
[5,4,2,1,3] => 1110 => 1110 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8) => 1
[5,4,3,1,2] => 1110 => 1110 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8) => 1
[5,4,3,2,1] => 1111 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[1,2,3,4,5,6] => 00000 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,2,3,4,6,5] => 00001 => 00001 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10) => 1
[1,2,3,5,4,6] => 00010 => 10000 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10) => 1
[1,2,3,5,6,4] => 00001 => 00001 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10) => 1
[1,2,3,6,4,5] => 00010 => 10000 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10) => 1
[1,2,3,6,5,4] => 00011 => 00011 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[1,2,4,5,3,6] => 00010 => 10000 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10) => 1
[1,2,4,5,6,3] => 00001 => 00001 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10) => 1
[1,2,4,6,3,5] => 00010 => 10000 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10) => 1
[1,2,4,6,5,3] => 00011 => 00011 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[1,2,5,4,3,6] => 00110 => 11000 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[1,2,5,6,3,4] => 00010 => 10000 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10) => 1
[1,2,5,6,4,3] => 00011 => 00011 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[1,2,6,4,3,5] => 00110 => 11000 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[1,2,6,5,3,4] => 00110 => 11000 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[1,2,6,5,4,3] => 00111 => 00111 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[1,3,4,5,2,6] => 00010 => 10000 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10) => 1
[1,3,4,5,6,2] => 00001 => 00001 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10) => 1
[1,3,4,6,2,5] => 00010 => 10000 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10) => 1
[1,3,4,6,5,2] => 00011 => 00011 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[1,3,5,4,2,6] => 00110 => 11000 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[1,3,5,6,2,4] => 00010 => 10000 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10) => 1
[1,3,5,6,4,2] => 00011 => 00011 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[1,3,6,4,2,5] => 00110 => 11000 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[1,3,6,5,2,4] => 00110 => 11000 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[1,3,6,5,4,2] => 00111 => 00111 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[1,4,5,3,2,6] => 00110 => 11000 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[1,4,5,6,2,3] => 00010 => 10000 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10) => 1
[1,4,5,6,3,2] => 00011 => 00011 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
>>> Load all 176 entries. <<<
[1,4,6,3,2,5] => 00110 => 11000 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[1,4,6,5,2,3] => 00110 => 11000 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[1,4,6,5,3,2] => 00111 => 00111 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[1,5,4,3,2,6] => 01110 => 11100 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[1,5,6,3,2,4] => 00110 => 11000 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[1,5,6,4,2,3] => 00110 => 11000 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[1,5,6,4,3,2] => 00111 => 00111 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[1,6,4,3,2,5] => 01110 => 11100 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[1,6,5,3,2,4] => 01110 => 11100 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[1,6,5,4,2,3] => 01110 => 11100 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[1,6,5,4,3,2] => 01111 => 01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10) => 1
[2,3,4,5,1,6] => 00010 => 10000 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10) => 1
[2,3,4,5,6,1] => 00001 => 00001 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10) => 1
[2,3,4,6,1,5] => 00010 => 10000 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10) => 1
[2,3,4,6,5,1] => 00011 => 00011 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[2,3,5,4,1,6] => 00110 => 11000 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[2,3,5,6,1,4] => 00010 => 10000 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10) => 1
[2,3,5,6,4,1] => 00011 => 00011 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[2,3,6,4,1,5] => 00110 => 11000 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[2,3,6,5,1,4] => 00110 => 11000 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[2,3,6,5,4,1] => 00111 => 00111 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[2,4,5,3,1,6] => 00110 => 11000 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[2,4,5,6,1,3] => 00010 => 10000 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10) => 1
[2,4,5,6,3,1] => 00011 => 00011 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[2,4,6,3,1,5] => 00110 => 11000 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[2,4,6,5,1,3] => 00110 => 11000 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[2,4,6,5,3,1] => 00111 => 00111 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[2,5,4,3,1,6] => 01110 => 11100 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[2,5,6,3,1,4] => 00110 => 11000 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[2,5,6,4,1,3] => 00110 => 11000 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[2,5,6,4,3,1] => 00111 => 00111 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[2,6,4,3,1,5] => 01110 => 11100 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[2,6,5,3,1,4] => 01110 => 11100 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[2,6,5,4,1,3] => 01110 => 11100 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[2,6,5,4,3,1] => 01111 => 01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10) => 1
[3,4,5,2,1,6] => 00110 => 11000 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[3,4,5,6,1,2] => 00010 => 10000 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10) => 1
[3,4,5,6,2,1] => 00011 => 00011 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[3,4,6,2,1,5] => 00110 => 11000 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[3,4,6,5,1,2] => 00110 => 11000 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[3,4,6,5,2,1] => 00111 => 00111 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[3,5,4,2,1,6] => 01110 => 11100 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[3,5,6,2,1,4] => 00110 => 11000 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[3,5,6,4,1,2] => 00110 => 11000 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[3,5,6,4,2,1] => 00111 => 00111 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[3,6,4,2,1,5] => 01110 => 11100 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[3,6,5,2,1,4] => 01110 => 11100 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[3,6,5,4,1,2] => 01110 => 11100 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[3,6,5,4,2,1] => 01111 => 01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10) => 1
[4,5,3,2,1,6] => 01110 => 11100 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[4,5,6,2,1,3] => 00110 => 11000 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[4,5,6,3,1,2] => 00110 => 11000 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[4,5,6,3,2,1] => 00111 => 00111 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[4,6,3,2,1,5] => 01110 => 11100 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[4,6,5,2,1,3] => 01110 => 11100 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[4,6,5,3,1,2] => 01110 => 11100 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[4,6,5,3,2,1] => 01111 => 01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10) => 1
[5,4,3,2,1,6] => 11110 => 11110 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10) => 1
[5,6,3,2,1,4] => 01110 => 11100 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[5,6,4,2,1,3] => 01110 => 11100 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[5,6,4,3,1,2] => 01110 => 11100 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => 1
[5,6,4,3,2,1] => 01111 => 01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10) => 1
[6,4,3,2,1,5] => 11110 => 11110 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10) => 1
[6,5,3,2,1,4] => 11110 => 11110 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10) => 1
[6,5,4,2,1,3] => 11110 => 11110 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10) => 1
[6,5,4,3,1,2] => 11110 => 11110 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10) => 1
[6,5,4,3,2,1] => 11111 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,2,3,4,5,6,7] => 000000 => 000000 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 1
[7,6,5,4,3,2,1] => 111111 => 111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 1
[8,7,6,5,4,3,2,1] => 1111111 => 1111111 => ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8) => 1
[1,2,3,4,5,6,7,8] => 0000000 => 0000000 => ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8) => 1
[10,9,8,7,6,5,4,3,2,1] => 111111111 => 111111111 => ([(0,9),(2,4),(3,2),(4,6),(5,3),(6,8),(7,5),(8,1),(9,7)],10) => 1
[1,2,3,4,5,6,7,8,9] => 00000000 => 00000000 => ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9) => 1
[1,2,3,4,5,6,7,8,9,10] => 000000000 => 000000000 => ([(0,9),(2,4),(3,2),(4,6),(5,3),(6,8),(7,5),(8,1),(9,7)],10) => 1
[9,8,7,6,5,4,3,2,1] => 11111111 => 11111111 => ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9) => 1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The number of minimal elements in a poset.
Map
descent word
Description
The descent positions of a permutation as a binary word.
For a permutation $\pi$ of $n$ letters and each $1\leq i\leq n-1$ such that $\pi(i) > \pi(i+1)$ we set $w_i=1$, otherwise $w_i=0$.
Thus, the length of the word is one less the size of the permutation. In particular, the descent word is undefined for the empty permutation.
Map
inverse Foata bijection
Description
The inverse of Foata's bijection.
See Mp00096Foata bijection.
Map
poset of factors
Description
The poset of factors of a binary word.
This is the partial order on the set of distinct factors of a binary word, such that $u < v$ if and only if $u$ is a factor of $v$.