Identifier
Values
[1,0] => [1,1,0,0] => [[0,1],[1,0]] => 1
[1,0,1,0] => [1,1,0,1,0,0] => [[0,1,0],[1,-1,1],[0,1,0]] => 2
[1,1,0,0] => [1,1,1,0,0,0] => [[0,0,1],[0,1,0],[1,0,0]] => 4
[1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]] => 3
[1,0,1,1,0,0] => [1,1,0,1,1,0,0,0] => [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]] => 5
[1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]] => 5
[1,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]] => 7
[1,1,1,0,0,0] => [1,1,1,1,0,0,0,0] => [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]] => 10
[1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]] => 4
[1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]] => 6
[1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]] => 6
[1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]] => 8
[1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => [[0,1,0,0,0],[1,-1,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]] => 11
[1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]] => 6
[1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0] => [[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]] => 8
[1,1,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => [[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]] => 8
[1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => [[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]] => 10
[1,1,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => [[0,0,1,0,0],[0,1,-1,0,1],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0]] => 13
[1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,-1,1],[0,0,0,1,0]] => 11
[1,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [[0,0,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[1,0,-1,1,0],[0,0,1,0,0]] => 13
[1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0]] => 16
[1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0]] => 20
[1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => 5
[1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]] => 7
[1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,0] => [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,-1,0,1,0],[0,0,0,1,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]] => 7
[1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,1,1,0,1,0,0,0] => [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,-1,0,1,0],[0,0,0,1,-1,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]] => 9
[1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,-1,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0]] => 12
[1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,0] => [[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,1,0,0,0],[0,1,0,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => 7
[1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,1,1,0,0,0] => [[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,1,0,0,0],[0,1,0,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]] => 9
[1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,1,0,0,1,0,0] => [[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,1,-1,1,0],[0,1,-1,1,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]] => 9
[1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => [[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,1,-1,1,0],[0,1,-1,1,-1,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]] => 11
[1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,1,0,0,0,0] => [[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,1,-1,0,1],[0,1,-1,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0]] => 14
[1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,0] => [[0,1,0,0,0,0],[1,-1,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,-1,1],[0,0,0,0,1,0]] => 12
[1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,1,0,0,1,0,0,0] => [[0,1,0,0,0,0],[1,-1,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,-1,1],[0,1,0,-1,1,0],[0,0,0,1,0,0]] => 14
[1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,1,1,0,1,0,0,0,0] => [[0,1,0,0,0,0],[1,-1,0,0,1,0],[0,0,0,1,-1,1],[0,0,1,-1,1,0],[0,1,-1,1,0,0],[0,0,1,0,0,0]] => 17
[1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [[0,1,0,0,0,0],[1,-1,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0]] => 21
[1,1,0,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => [[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => 7
[1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,1,0,0,0] => [[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]] => 9
[1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,1,0,0] => [[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,0,1,0],[0,0,0,1,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]] => 9
[1,1,0,0,1,1,0,1,0,0] => [1,1,1,0,0,1,1,0,1,0,0,0] => [[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,0,1,0],[0,0,0,1,-1,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]] => 11
[1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => [[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0]] => 14
[1,1,0,1,0,0,1,0,1,0] => [1,1,1,0,1,0,0,1,0,1,0,0] => [[0,0,1,0,0,0],[0,1,-1,1,0,0],[1,-1,1,0,0,0],[0,1,0,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => 9
[1,1,0,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,1,0,0,0] => [[0,0,1,0,0,0],[0,1,-1,1,0,0],[1,-1,1,0,0,0],[0,1,0,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]] => 11
[1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => [[0,0,1,0,0,0],[0,1,-1,1,0,0],[1,-1,1,-1,1,0],[0,1,-1,1,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]] => 11
[1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [[0,0,1,0,0,0],[0,1,-1,1,0,0],[1,-1,1,-1,1,0],[0,1,-1,1,-1,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]] => 13
[1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [[0,0,1,0,0,0],[0,1,-1,1,0,0],[1,-1,1,-1,0,1],[0,1,-1,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0]] => 16
[1,1,0,1,1,0,0,0,1,0] => [1,1,1,0,1,1,0,0,0,1,0,0] => [[0,0,1,0,0,0],[0,1,-1,0,1,0],[1,-1,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,-1,1],[0,0,0,0,1,0]] => 14
[1,1,0,1,1,0,0,1,0,0] => [1,1,1,0,1,1,0,0,1,0,0,0] => [[0,0,1,0,0,0],[0,1,-1,0,1,0],[1,-1,0,1,0,0],[0,0,1,0,-1,1],[0,1,0,-1,1,0],[0,0,0,1,0,0]] => 16
[1,1,0,1,1,0,1,0,0,0] => [1,1,1,0,1,1,0,1,0,0,0,0] => [[0,0,1,0,0,0],[0,1,-1,0,1,0],[1,-1,0,1,-1,1],[0,0,1,-1,1,0],[0,1,-1,1,0,0],[0,0,1,0,0,0]] => 19
[1,1,0,1,1,1,0,0,0,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => [[0,0,1,0,0,0],[0,1,-1,0,0,1],[1,-1,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0]] => 23
[1,1,1,0,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => [[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => 12
[1,1,1,0,0,0,1,1,0,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => [[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]] => 14
[1,1,1,0,0,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,1,0,0] => [[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,-1,1,0],[1,0,-1,1,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]] => 14
[1,1,1,0,0,1,0,1,0,0] => [1,1,1,1,0,0,1,0,1,0,0,0] => [[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,-1,1,0],[1,0,-1,1,-1,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]] => 16
[1,1,1,0,0,1,1,0,0,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => [[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,-1,0,1],[1,0,-1,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0]] => 19
[1,1,1,0,1,0,0,0,1,0] => [1,1,1,1,0,1,0,0,0,1,0,0] => [[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,1,-1,1,0,0],[1,-1,1,0,0,0],[0,1,0,0,-1,1],[0,0,0,0,1,0]] => 17
[1,1,1,0,1,0,0,1,0,0] => [1,1,1,1,0,1,0,0,1,0,0,0] => [[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,1,-1,1,0,0],[1,-1,1,0,-1,1],[0,1,0,-1,1,0],[0,0,0,1,0,0]] => 19
[1,1,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => [[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,1,-1,1,-1,1],[1,-1,1,-1,1,0],[0,1,-1,1,0,0],[0,0,1,0,0,0]] => 22
[1,1,1,0,1,1,0,0,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => [[0,0,0,1,0,0],[0,0,1,-1,0,1],[0,1,-1,0,1,0],[1,-1,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0]] => 26
[1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => [[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,0,-1,1],[0,0,0,0,1,0]] => 21
[1,1,1,1,0,0,0,1,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => [[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,-1,1],[1,0,0,-1,1,0],[0,0,0,1,0,0]] => 23
[1,1,1,1,0,0,1,0,0,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => [[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,-1,1],[0,1,0,-1,1,0],[1,0,-1,1,0,0],[0,0,1,0,0,0]] => 26
[1,1,1,1,0,1,0,0,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => [[0,0,0,0,1,0],[0,0,0,1,-1,1],[0,0,1,-1,1,0],[0,1,-1,1,0,0],[1,-1,1,0,0,0],[0,1,0,0,0,0]] => 30
[1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0]] => 35
[1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0] => [[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0]] => 84
[] => [1,0] => [[1]] => 0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The rank of the alternating sign matrix in the alternating sign matrix poset.
This rank is the sum of the entries of the monotone triangle minus $\binom{n+2}{3}$, which is the smallest sum of the entries in the set of all monotone triangles with bottom row $1\dots n$.
Alternatively, $rank(A)=\frac{1}{2} \sum_{i,j=1}^n (i-j)^2 a_{ij}$, see [3, thm.5.1].
Map
prime Dyck path
Description
Return the Dyck path obtained by adding an initial up and a final down step.
Map
to symmetric ASM
Description
The diagonally symmetric alternating sign matrix corresponding to a Dyck path.