Identifier
- St000079: Dyck paths ⟶ ℤ
Values
=>
Cc0005;cc-rep
[1,0]=>1
[1,0,1,0]=>1
[1,1,0,0]=>1
[1,0,1,0,1,0]=>1
[1,0,1,1,0,0]=>1
[1,1,0,0,1,0]=>1
[1,1,0,1,0,0]=>2
[1,1,1,0,0,0]=>2
[1,0,1,0,1,0,1,0]=>1
[1,0,1,0,1,1,0,0]=>1
[1,0,1,1,0,0,1,0]=>1
[1,0,1,1,0,1,0,0]=>2
[1,0,1,1,1,0,0,0]=>2
[1,1,0,0,1,0,1,0]=>1
[1,1,0,0,1,1,0,0]=>1
[1,1,0,1,0,0,1,0]=>2
[1,1,0,1,0,1,0,0]=>5
[1,1,0,1,1,0,0,0]=>5
[1,1,1,0,0,0,1,0]=>2
[1,1,1,0,0,1,0,0]=>5
[1,1,1,0,1,0,0,0]=>7
[1,1,1,1,0,0,0,0]=>7
[1,0,1,0,1,0,1,0,1,0]=>1
[1,0,1,0,1,0,1,1,0,0]=>1
[1,0,1,0,1,1,0,0,1,0]=>1
[1,0,1,0,1,1,0,1,0,0]=>2
[1,0,1,0,1,1,1,0,0,0]=>2
[1,0,1,1,0,0,1,0,1,0]=>1
[1,0,1,1,0,0,1,1,0,0]=>1
[1,0,1,1,0,1,0,0,1,0]=>2
[1,0,1,1,0,1,0,1,0,0]=>5
[1,0,1,1,0,1,1,0,0,0]=>5
[1,0,1,1,1,0,0,0,1,0]=>2
[1,0,1,1,1,0,0,1,0,0]=>5
[1,0,1,1,1,0,1,0,0,0]=>7
[1,0,1,1,1,1,0,0,0,0]=>7
[1,1,0,0,1,0,1,0,1,0]=>1
[1,1,0,0,1,0,1,1,0,0]=>1
[1,1,0,0,1,1,0,0,1,0]=>1
[1,1,0,0,1,1,0,1,0,0]=>2
[1,1,0,0,1,1,1,0,0,0]=>2
[1,1,0,1,0,0,1,0,1,0]=>2
[1,1,0,1,0,0,1,1,0,0]=>2
[1,1,0,1,0,1,0,0,1,0]=>5
[1,1,0,1,0,1,0,1,0,0]=>14
[1,1,0,1,0,1,1,0,0,0]=>14
[1,1,0,1,1,0,0,0,1,0]=>5
[1,1,0,1,1,0,0,1,0,0]=>14
[1,1,0,1,1,0,1,0,0,0]=>21
[1,1,0,1,1,1,0,0,0,0]=>21
[1,1,1,0,0,0,1,0,1,0]=>2
[1,1,1,0,0,0,1,1,0,0]=>2
[1,1,1,0,0,1,0,0,1,0]=>5
[1,1,1,0,0,1,0,1,0,0]=>14
[1,1,1,0,0,1,1,0,0,0]=>14
[1,1,1,0,1,0,0,0,1,0]=>7
[1,1,1,0,1,0,0,1,0,0]=>21
[1,1,1,0,1,0,1,0,0,0]=>35
[1,1,1,0,1,1,0,0,0,0]=>35
[1,1,1,1,0,0,0,0,1,0]=>7
[1,1,1,1,0,0,0,1,0,0]=>21
[1,1,1,1,0,0,1,0,0,0]=>35
[1,1,1,1,0,1,0,0,0,0]=>42
[1,1,1,1,1,0,0,0,0,0]=>42
[1,0,1,0,1,0,1,0,1,0,1,0]=>1
[1,0,1,0,1,0,1,0,1,1,0,0]=>1
[1,0,1,0,1,0,1,1,0,0,1,0]=>1
[1,0,1,0,1,0,1,1,0,1,0,0]=>2
[1,0,1,0,1,0,1,1,1,0,0,0]=>2
[1,0,1,0,1,1,0,0,1,0,1,0]=>1
[1,0,1,0,1,1,0,0,1,1,0,0]=>1
[1,0,1,0,1,1,0,1,0,0,1,0]=>2
[1,0,1,0,1,1,0,1,0,1,0,0]=>5
[1,0,1,0,1,1,0,1,1,0,0,0]=>5
[1,0,1,0,1,1,1,0,0,0,1,0]=>2
[1,0,1,0,1,1,1,0,0,1,0,0]=>5
[1,0,1,0,1,1,1,0,1,0,0,0]=>7
[1,0,1,0,1,1,1,1,0,0,0,0]=>7
[1,0,1,1,0,0,1,0,1,0,1,0]=>1
[1,0,1,1,0,0,1,0,1,1,0,0]=>1
[1,0,1,1,0,0,1,1,0,0,1,0]=>1
[1,0,1,1,0,0,1,1,0,1,0,0]=>2
[1,0,1,1,0,0,1,1,1,0,0,0]=>2
[1,0,1,1,0,1,0,0,1,0,1,0]=>2
[1,0,1,1,0,1,0,0,1,1,0,0]=>2
[1,0,1,1,0,1,0,1,0,0,1,0]=>5
[1,0,1,1,0,1,0,1,0,1,0,0]=>14
[1,0,1,1,0,1,0,1,1,0,0,0]=>14
[1,0,1,1,0,1,1,0,0,0,1,0]=>5
[1,0,1,1,0,1,1,0,0,1,0,0]=>14
[1,0,1,1,0,1,1,0,1,0,0,0]=>21
[1,0,1,1,0,1,1,1,0,0,0,0]=>21
[1,0,1,1,1,0,0,0,1,0,1,0]=>2
[1,0,1,1,1,0,0,0,1,1,0,0]=>2
[1,0,1,1,1,0,0,1,0,0,1,0]=>5
[1,0,1,1,1,0,0,1,0,1,0,0]=>14
[1,0,1,1,1,0,0,1,1,0,0,0]=>14
[1,0,1,1,1,0,1,0,0,0,1,0]=>7
[1,0,1,1,1,0,1,0,0,1,0,0]=>21
[1,0,1,1,1,0,1,0,1,0,0,0]=>35
[1,0,1,1,1,0,1,1,0,0,0,0]=>35
[1,0,1,1,1,1,0,0,0,0,1,0]=>7
[1,0,1,1,1,1,0,0,0,1,0,0]=>21
[1,0,1,1,1,1,0,0,1,0,0,0]=>35
[1,0,1,1,1,1,0,1,0,0,0,0]=>42
[1,0,1,1,1,1,1,0,0,0,0,0]=>42
[1,1,0,0,1,0,1,0,1,0,1,0]=>1
[1,1,0,0,1,0,1,0,1,1,0,0]=>1
[1,1,0,0,1,0,1,1,0,0,1,0]=>1
[1,1,0,0,1,0,1,1,0,1,0,0]=>2
[1,1,0,0,1,0,1,1,1,0,0,0]=>2
[1,1,0,0,1,1,0,0,1,0,1,0]=>1
[1,1,0,0,1,1,0,0,1,1,0,0]=>1
[1,1,0,0,1,1,0,1,0,0,1,0]=>2
[1,1,0,0,1,1,0,1,0,1,0,0]=>5
[1,1,0,0,1,1,0,1,1,0,0,0]=>5
[1,1,0,0,1,1,1,0,0,0,1,0]=>2
[1,1,0,0,1,1,1,0,0,1,0,0]=>5
[1,1,0,0,1,1,1,0,1,0,0,0]=>7
[1,1,0,0,1,1,1,1,0,0,0,0]=>7
[1,1,0,1,0,0,1,0,1,0,1,0]=>2
[1,1,0,1,0,0,1,0,1,1,0,0]=>2
[1,1,0,1,0,0,1,1,0,0,1,0]=>2
[1,1,0,1,0,0,1,1,0,1,0,0]=>4
[1,1,0,1,0,0,1,1,1,0,0,0]=>4
[1,1,0,1,0,1,0,0,1,0,1,0]=>5
[1,1,0,1,0,1,0,0,1,1,0,0]=>5
[1,1,0,1,0,1,0,1,0,0,1,0]=>14
[1,1,0,1,0,1,0,1,0,1,0,0]=>42
[1,1,0,1,0,1,0,1,1,0,0,0]=>42
[1,1,0,1,0,1,1,0,0,0,1,0]=>14
[1,1,0,1,0,1,1,0,0,1,0,0]=>42
[1,1,0,1,0,1,1,0,1,0,0,0]=>65
[1,1,0,1,0,1,1,1,0,0,0,0]=>65
[1,1,0,1,1,0,0,0,1,0,1,0]=>5
[1,1,0,1,1,0,0,0,1,1,0,0]=>5
[1,1,0,1,1,0,0,1,0,0,1,0]=>14
[1,1,0,1,1,0,0,1,0,1,0,0]=>42
[1,1,0,1,1,0,0,1,1,0,0,0]=>42
[1,1,0,1,1,0,1,0,0,0,1,0]=>21
[1,1,0,1,1,0,1,0,0,1,0,0]=>68
[1,1,0,1,1,0,1,0,1,0,0,0]=>119
[1,1,0,1,1,0,1,1,0,0,0,0]=>119
[1,1,0,1,1,1,0,0,0,0,1,0]=>21
[1,1,0,1,1,1,0,0,0,1,0,0]=>68
[1,1,0,1,1,1,0,0,1,0,0,0]=>119
[1,1,0,1,1,1,0,1,0,0,0,0]=>147
[1,1,0,1,1,1,1,0,0,0,0,0]=>147
[1,1,1,0,0,0,1,0,1,0,1,0]=>2
[1,1,1,0,0,0,1,0,1,1,0,0]=>2
[1,1,1,0,0,0,1,1,0,0,1,0]=>2
[1,1,1,0,0,0,1,1,0,1,0,0]=>4
[1,1,1,0,0,0,1,1,1,0,0,0]=>4
[1,1,1,0,0,1,0,0,1,0,1,0]=>5
[1,1,1,0,0,1,0,0,1,1,0,0]=>5
[1,1,1,0,0,1,0,1,0,0,1,0]=>14
[1,1,1,0,0,1,0,1,0,1,0,0]=>42
[1,1,1,0,0,1,0,1,1,0,0,0]=>42
[1,1,1,0,0,1,1,0,0,0,1,0]=>14
[1,1,1,0,0,1,1,0,0,1,0,0]=>42
[1,1,1,0,0,1,1,0,1,0,0,0]=>65
[1,1,1,0,0,1,1,1,0,0,0,0]=>65
[1,1,1,0,1,0,0,0,1,0,1,0]=>7
[1,1,1,0,1,0,0,0,1,1,0,0]=>7
[1,1,1,0,1,0,0,1,0,0,1,0]=>21
[1,1,1,0,1,0,0,1,0,1,0,0]=>65
[1,1,1,0,1,0,0,1,1,0,0,0]=>65
[1,1,1,0,1,0,1,0,0,0,1,0]=>35
[1,1,1,0,1,0,1,0,0,1,0,0]=>119
[1,1,1,0,1,0,1,0,1,0,0,0]=>219
[1,1,1,0,1,0,1,1,0,0,0,0]=>219
[1,1,1,0,1,1,0,0,0,0,1,0]=>35
[1,1,1,0,1,1,0,0,0,1,0,0]=>119
[1,1,1,0,1,1,0,0,1,0,0,0]=>219
[1,1,1,0,1,1,0,1,0,0,0,0]=>282
[1,1,1,0,1,1,1,0,0,0,0,0]=>282
[1,1,1,1,0,0,0,0,1,0,1,0]=>7
[1,1,1,1,0,0,0,0,1,1,0,0]=>7
[1,1,1,1,0,0,0,1,0,0,1,0]=>21
[1,1,1,1,0,0,0,1,0,1,0,0]=>65
[1,1,1,1,0,0,0,1,1,0,0,0]=>65
[1,1,1,1,0,0,1,0,0,0,1,0]=>35
[1,1,1,1,0,0,1,0,0,1,0,0]=>119
[1,1,1,1,0,0,1,0,1,0,0,0]=>219
[1,1,1,1,0,0,1,1,0,0,0,0]=>219
[1,1,1,1,0,1,0,0,0,0,1,0]=>42
[1,1,1,1,0,1,0,0,0,1,0,0]=>147
[1,1,1,1,0,1,0,0,1,0,0,0]=>282
[1,1,1,1,0,1,0,1,0,0,0,0]=>387
[1,1,1,1,0,1,1,0,0,0,0,0]=>387
[1,1,1,1,1,0,0,0,0,0,1,0]=>42
[1,1,1,1,1,0,0,0,0,1,0,0]=>147
[1,1,1,1,1,0,0,0,1,0,0,0]=>282
[1,1,1,1,1,0,0,1,0,0,0,0]=>387
[1,1,1,1,1,0,1,0,0,0,0,0]=>429
[1,1,1,1,1,1,0,0,0,0,0,0]=>429
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of alternating sign matrices for a given Dyck path.
The Dyck path is given by the last diagonal of the monotone triangle corresponding to an alternating sign matrix.
The Dyck path is given by the last diagonal of the monotone triangle corresponding to an alternating sign matrix.
Code
def statistic(self): return sum( 1 for a in AlternatingSignMatrices(len(list(self))/2) if a.to_dyck_word(algorithm = 'last_diagonal') == self )
Created
Jun 11, 2013 at 21:17 by Jessica Striker
Updated
Aug 21, 2017 at 08:49 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!