Identifier
- St000082: Binary trees ⟶ ℤ
Values
=>
Cc0010;cc-rep
[.,[.,.]]=>2
[[.,.],.]=>1
[.,[.,[.,.]]]=>5
[.,[[.,.],.]]=>3
[[.,.],[.,.]]=>2
[[.,[.,.]],.]=>2
[[[.,.],.],.]=>1
[.,[.,[.,[.,.]]]]=>14
[.,[.,[[.,.],.]]]=>9
[.,[[.,.],[.,.]]]=>7
[.,[[.,[.,.]],.]]=>7
[.,[[[.,.],.],.]]=>4
[[.,.],[.,[.,.]]]=>5
[[.,.],[[.,.],.]]=>3
[[.,[.,.]],[.,.]]=>4
[[[.,.],.],[.,.]]=>2
[[.,[.,[.,.]]],.]=>5
[[.,[[.,.],.]],.]=>3
[[[.,.],[.,.]],.]=>2
[[[.,[.,.]],.],.]=>2
[[[[.,.],.],.],.]=>1
[.,[.,[.,[.,[.,.]]]]]=>42
[.,[.,[.,[[.,.],.]]]]=>28
[.,[.,[[.,.],[.,.]]]]=>23
[.,[.,[[.,[.,.]],.]]]=>23
[.,[.,[[[.,.],.],.]]]=>14
[.,[[.,.],[.,[.,.]]]]=>19
[.,[[.,.],[[.,.],.]]]=>12
[.,[[.,[.,.]],[.,.]]]=>16
[.,[[[.,.],.],[.,.]]]=>9
[.,[[.,[.,[.,.]]],.]]=>19
[.,[[.,[[.,.],.]],.]]=>12
[.,[[[.,.],[.,.]],.]]=>9
[.,[[[.,[.,.]],.],.]]=>9
[.,[[[[.,.],.],.],.]]=>5
[[.,.],[.,[.,[.,.]]]]=>14
[[.,.],[.,[[.,.],.]]]=>9
[[.,.],[[.,.],[.,.]]]=>7
[[.,.],[[.,[.,.]],.]]=>7
[[.,.],[[[.,.],.],.]]=>4
[[.,[.,.]],[.,[.,.]]]=>10
[[.,[.,.]],[[.,.],.]]=>6
[[[.,.],.],[.,[.,.]]]=>5
[[[.,.],.],[[.,.],.]]=>3
[[.,[.,[.,.]]],[.,.]]=>10
[[.,[[.,.],.]],[.,.]]=>6
[[[.,.],[.,.]],[.,.]]=>4
[[[.,[.,.]],.],[.,.]]=>4
[[[[.,.],.],.],[.,.]]=>2
[[.,[.,[.,[.,.]]]],.]=>14
[[.,[.,[[.,.],.]]],.]=>9
[[.,[[.,.],[.,.]]],.]=>7
[[.,[[.,[.,.]],.]],.]=>7
[[.,[[[.,.],.],.]],.]=>4
[[[.,.],[.,[.,.]]],.]=>5
[[[.,.],[[.,.],.]],.]=>3
[[[.,[.,.]],[.,.]],.]=>4
[[[[.,.],.],[.,.]],.]=>2
[[[.,[.,[.,.]]],.],.]=>5
[[[.,[[.,.],.]],.],.]=>3
[[[[.,.],[.,.]],.],.]=>2
[[[[.,[.,.]],.],.],.]=>2
[[[[[.,.],.],.],.],.]=>1
[.,[.,[.,[.,[.,[.,.]]]]]]=>132
[.,[.,[.,[.,[[.,.],.]]]]]=>90
[.,[.,[.,[[.,.],[.,.]]]]]=>76
[.,[.,[.,[[.,[.,.]],.]]]]=>76
[.,[.,[.,[[[.,.],.],.]]]]=>48
[.,[.,[[.,.],[.,[.,.]]]]]=>66
[.,[.,[[.,.],[[.,.],.]]]]=>43
[.,[.,[[.,[.,.]],[.,.]]]]=>57
[.,[.,[[[.,.],.],[.,.]]]]=>34
[.,[.,[[.,[.,[.,.]]],.]]]=>66
[.,[.,[[.,[[.,.],.]],.]]]=>43
[.,[.,[[[.,.],[.,.]],.]]]=>34
[.,[.,[[[.,[.,.]],.],.]]]=>34
[.,[.,[[[[.,.],.],.],.]]]=>20
[.,[[.,.],[.,[.,[.,.]]]]]=>56
[.,[[.,.],[.,[[.,.],.]]]]=>37
[.,[[.,.],[[.,.],[.,.]]]]=>30
[.,[[.,.],[[.,[.,.]],.]]]=>30
[.,[[.,.],[[[.,.],.],.]]]=>18
[.,[[.,[.,.]],[.,[.,.]]]]=>43
[.,[[.,[.,.]],[[.,.],.]]]=>27
[.,[[[.,.],.],[.,[.,.]]]]=>24
[.,[[[.,.],.],[[.,.],.]]]=>15
[.,[[.,[.,[.,.]]],[.,.]]]=>43
[.,[[.,[[.,.],.]],[.,.]]]=>27
[.,[[[.,.],[.,.]],[.,.]]]=>20
[.,[[[.,[.,.]],.],[.,.]]]=>20
[.,[[[[.,.],.],.],[.,.]]]=>11
[.,[[.,[.,[.,[.,.]]]],.]]=>56
[.,[[.,[.,[[.,.],.]]],.]]=>37
[.,[[.,[[.,.],[.,.]]],.]]=>30
[.,[[.,[[.,[.,.]],.]],.]]=>30
[.,[[.,[[[.,.],.],.]],.]]=>18
[.,[[[.,.],[.,[.,.]]],.]]=>24
[.,[[[.,.],[[.,.],.]],.]]=>15
[.,[[[.,[.,.]],[.,.]],.]]=>20
[.,[[[[.,.],.],[.,.]],.]]=>11
[.,[[[.,[.,[.,.]]],.],.]]=>24
[.,[[[.,[[.,.],.]],.],.]]=>15
[.,[[[[.,.],[.,.]],.],.]]=>11
[.,[[[[.,[.,.]],.],.],.]]=>11
[.,[[[[[.,.],.],.],.],.]]=>6
[[.,.],[.,[.,[.,[.,.]]]]]=>42
[[.,.],[.,[.,[[.,.],.]]]]=>28
[[.,.],[.,[[.,.],[.,.]]]]=>23
[[.,.],[.,[[.,[.,.]],.]]]=>23
[[.,.],[.,[[[.,.],.],.]]]=>14
[[.,.],[[.,.],[.,[.,.]]]]=>19
[[.,.],[[.,.],[[.,.],.]]]=>12
[[.,.],[[.,[.,.]],[.,.]]]=>16
[[.,.],[[[.,.],.],[.,.]]]=>9
[[.,.],[[.,[.,[.,.]]],.]]=>19
[[.,.],[[.,[[.,.],.]],.]]=>12
[[.,.],[[[.,.],[.,.]],.]]=>9
[[.,.],[[[.,[.,.]],.],.]]=>9
[[.,.],[[[[.,.],.],.],.]]=>5
[[.,[.,.]],[.,[.,[.,.]]]]=>28
[[.,[.,.]],[.,[[.,.],.]]]=>18
[[.,[.,.]],[[.,.],[.,.]]]=>14
[[.,[.,.]],[[.,[.,.]],.]]=>14
[[.,[.,.]],[[[.,.],.],.]]=>8
[[[.,.],.],[.,[.,[.,.]]]]=>14
[[[.,.],.],[.,[[.,.],.]]]=>9
[[[.,.],.],[[.,.],[.,.]]]=>7
[[[.,.],.],[[.,[.,.]],.]]=>7
[[[.,.],.],[[[.,.],.],.]]=>4
[[.,[.,[.,.]]],[.,[.,.]]]=>25
[[.,[.,[.,.]]],[[.,.],.]]=>15
[[.,[[.,.],.]],[.,[.,.]]]=>15
[[.,[[.,.],.]],[[.,.],.]]=>9
[[[.,.],[.,.]],[.,[.,.]]]=>10
[[[.,.],[.,.]],[[.,.],.]]=>6
[[[.,[.,.]],.],[.,[.,.]]]=>10
[[[.,[.,.]],.],[[.,.],.]]=>6
[[[[.,.],.],.],[.,[.,.]]]=>5
[[[[.,.],.],.],[[.,.],.]]=>3
[[.,[.,[.,[.,.]]]],[.,.]]=>28
[[.,[.,[[.,.],.]]],[.,.]]=>18
[[.,[[.,.],[.,.]]],[.,.]]=>14
[[.,[[.,[.,.]],.]],[.,.]]=>14
[[.,[[[.,.],.],.]],[.,.]]=>8
[[[.,.],[.,[.,.]]],[.,.]]=>10
[[[.,.],[[.,.],.]],[.,.]]=>6
[[[.,[.,.]],[.,.]],[.,.]]=>8
[[[[.,.],.],[.,.]],[.,.]]=>4
[[[.,[.,[.,.]]],.],[.,.]]=>10
[[[.,[[.,.],.]],.],[.,.]]=>6
[[[[.,.],[.,.]],.],[.,.]]=>4
[[[[.,[.,.]],.],.],[.,.]]=>4
[[[[[.,.],.],.],.],[.,.]]=>2
[[.,[.,[.,[.,[.,.]]]]],.]=>42
[[.,[.,[.,[[.,.],.]]]],.]=>28
[[.,[.,[[.,.],[.,.]]]],.]=>23
[[.,[.,[[.,[.,.]],.]]],.]=>23
[[.,[.,[[[.,.],.],.]]],.]=>14
[[.,[[.,.],[.,[.,.]]]],.]=>19
[[.,[[.,.],[[.,.],.]]],.]=>12
[[.,[[.,[.,.]],[.,.]]],.]=>16
[[.,[[[.,.],.],[.,.]]],.]=>9
[[.,[[.,[.,[.,.]]],.]],.]=>19
[[.,[[.,[[.,.],.]],.]],.]=>12
[[.,[[[.,.],[.,.]],.]],.]=>9
[[.,[[[.,[.,.]],.],.]],.]=>9
[[.,[[[[.,.],.],.],.]],.]=>5
[[[.,.],[.,[.,[.,.]]]],.]=>14
[[[.,.],[.,[[.,.],.]]],.]=>9
[[[.,.],[[.,.],[.,.]]],.]=>7
[[[.,.],[[.,[.,.]],.]],.]=>7
[[[.,.],[[[.,.],.],.]],.]=>4
[[[.,[.,.]],[.,[.,.]]],.]=>10
[[[.,[.,.]],[[.,.],.]],.]=>6
[[[[.,.],.],[.,[.,.]]],.]=>5
[[[[.,.],.],[[.,.],.]],.]=>3
[[[.,[.,[.,.]]],[.,.]],.]=>10
[[[.,[[.,.],.]],[.,.]],.]=>6
[[[[.,.],[.,.]],[.,.]],.]=>4
[[[[.,[.,.]],.],[.,.]],.]=>4
[[[[[.,.],.],.],[.,.]],.]=>2
[[[.,[.,[.,[.,.]]]],.],.]=>14
[[[.,[.,[[.,.],.]]],.],.]=>9
[[[.,[[.,.],[.,.]]],.],.]=>7
[[[.,[[.,[.,.]],.]],.],.]=>7
[[[.,[[[.,.],.],.]],.],.]=>4
[[[[.,.],[.,[.,.]]],.],.]=>5
[[[[.,.],[[.,.],.]],.],.]=>3
[[[[.,[.,.]],[.,.]],.],.]=>4
[[[[[.,.],.],[.,.]],.],.]=>2
[[[[.,[.,[.,.]]],.],.],.]=>5
[[[[.,[[.,.],.]],.],.],.]=>3
[[[[[.,.],[.,.]],.],.],.]=>2
[[[[[.,[.,.]],.],.],.],.]=>2
[[[[[[.,.],.],.],.],.],.]=>1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of elements smaller than a binary tree in Tamari order.
References
[1] Chatel, Grégory, Pons, V. Counting smaller trees in the Tamari order MathSciNet:3091011
Code
def statistic(tree): return len(tree.tamari_smaller())
Created
Jun 13, 2013 at 09:55 by Viviane Pons
Updated
Oct 17, 2015 at 10:48 by Christian Stump
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!