Identifier
-
Mp00049:
Ordered trees
—to binary tree: left brother = left child⟶
Binary trees
St000083: Binary trees ⟶ ℤ
Values
[[],[]] => [[.,.],.] => 0
[[[]]] => [.,[.,.]] => 1
[[],[],[]] => [[[.,.],.],.] => 0
[[],[[]]] => [[.,.],[.,.]] => 1
[[[]],[]] => [[.,[.,.]],.] => 1
[[[],[]]] => [.,[[.,.],.]] => 1
[[[[]]]] => [.,[.,[.,.]]] => 2
[[],[],[],[]] => [[[[.,.],.],.],.] => 0
[[],[],[[]]] => [[[.,.],.],[.,.]] => 1
[[],[[]],[]] => [[[.,.],[.,.]],.] => 1
[[],[[],[]]] => [[.,.],[[.,.],.]] => 1
[[],[[[]]]] => [[.,.],[.,[.,.]]] => 2
[[[]],[],[]] => [[[.,[.,.]],.],.] => 1
[[[]],[[]]] => [[.,[.,.]],[.,.]] => 2
[[[],[]],[]] => [[.,[[.,.],.]],.] => 1
[[[[]]],[]] => [[.,[.,[.,.]]],.] => 2
[[[],[],[]]] => [.,[[[.,.],.],.]] => 1
[[[],[[]]]] => [.,[[.,.],[.,.]]] => 2
[[[[]],[]]] => [.,[[.,[.,.]],.]] => 2
[[[[],[]]]] => [.,[.,[[.,.],.]]] => 2
[[[[[]]]]] => [.,[.,[.,[.,.]]]] => 3
[[],[],[],[],[]] => [[[[[.,.],.],.],.],.] => 0
[[],[],[],[[]]] => [[[[.,.],.],.],[.,.]] => 1
[[],[],[[]],[]] => [[[[.,.],.],[.,.]],.] => 1
[[],[],[[],[]]] => [[[.,.],.],[[.,.],.]] => 1
[[],[],[[[]]]] => [[[.,.],.],[.,[.,.]]] => 2
[[],[[]],[],[]] => [[[[.,.],[.,.]],.],.] => 1
[[],[[]],[[]]] => [[[.,.],[.,.]],[.,.]] => 2
[[],[[],[]],[]] => [[[.,.],[[.,.],.]],.] => 1
[[],[[[]]],[]] => [[[.,.],[.,[.,.]]],.] => 2
[[],[[],[],[]]] => [[.,.],[[[.,.],.],.]] => 1
[[],[[],[[]]]] => [[.,.],[[.,.],[.,.]]] => 2
[[],[[[]],[]]] => [[.,.],[[.,[.,.]],.]] => 2
[[],[[[],[]]]] => [[.,.],[.,[[.,.],.]]] => 2
[[],[[[[]]]]] => [[.,.],[.,[.,[.,.]]]] => 3
[[[]],[],[],[]] => [[[[.,[.,.]],.],.],.] => 1
[[[]],[],[[]]] => [[[.,[.,.]],.],[.,.]] => 2
[[[]],[[]],[]] => [[[.,[.,.]],[.,.]],.] => 2
[[[]],[[],[]]] => [[.,[.,.]],[[.,.],.]] => 2
[[[]],[[[]]]] => [[.,[.,.]],[.,[.,.]]] => 3
[[[],[]],[],[]] => [[[.,[[.,.],.]],.],.] => 1
[[[[]]],[],[]] => [[[.,[.,[.,.]]],.],.] => 2
[[[],[]],[[]]] => [[.,[[.,.],.]],[.,.]] => 2
[[[[]]],[[]]] => [[.,[.,[.,.]]],[.,.]] => 3
[[[],[],[]],[]] => [[.,[[[.,.],.],.]],.] => 1
[[[],[[]]],[]] => [[.,[[.,.],[.,.]]],.] => 2
[[[[]],[]],[]] => [[.,[[.,[.,.]],.]],.] => 2
[[[[],[]]],[]] => [[.,[.,[[.,.],.]]],.] => 2
[[[[[]]]],[]] => [[.,[.,[.,[.,.]]]],.] => 3
[[[],[],[],[]]] => [.,[[[[.,.],.],.],.]] => 1
[[[],[],[[]]]] => [.,[[[.,.],.],[.,.]]] => 2
[[[],[[]],[]]] => [.,[[[.,.],[.,.]],.]] => 2
[[[],[[],[]]]] => [.,[[.,.],[[.,.],.]]] => 2
[[[],[[[]]]]] => [.,[[.,.],[.,[.,.]]]] => 3
[[[[]],[],[]]] => [.,[[[.,[.,.]],.],.]] => 2
[[[[]],[[]]]] => [.,[[.,[.,.]],[.,.]]] => 3
[[[[],[]],[]]] => [.,[[.,[[.,.],.]],.]] => 2
[[[[[]]],[]]] => [.,[[.,[.,[.,.]]],.]] => 3
[[[[],[],[]]]] => [.,[.,[[[.,.],.],.]]] => 2
[[[[],[[]]]]] => [.,[.,[[.,.],[.,.]]]] => 3
[[[[[]],[]]]] => [.,[.,[[.,[.,.]],.]]] => 3
[[[[[],[]]]]] => [.,[.,[.,[[.,.],.]]]] => 3
[[[[[[]]]]]] => [.,[.,[.,[.,[.,.]]]]] => 4
[[],[],[],[],[],[]] => [[[[[[.,.],.],.],.],.],.] => 0
[[],[],[],[],[[]]] => [[[[[.,.],.],.],.],[.,.]] => 1
[[],[],[],[[]],[]] => [[[[[.,.],.],.],[.,.]],.] => 1
[[],[],[],[[],[]]] => [[[[.,.],.],.],[[.,.],.]] => 1
[[],[],[],[[[]]]] => [[[[.,.],.],.],[.,[.,.]]] => 2
[[],[],[[]],[],[]] => [[[[[.,.],.],[.,.]],.],.] => 1
[[],[],[[]],[[]]] => [[[[.,.],.],[.,.]],[.,.]] => 2
[[],[],[[],[]],[]] => [[[[.,.],.],[[.,.],.]],.] => 1
[[],[],[[[]]],[]] => [[[[.,.],.],[.,[.,.]]],.] => 2
[[],[],[[],[],[]]] => [[[.,.],.],[[[.,.],.],.]] => 1
[[],[],[[],[[]]]] => [[[.,.],.],[[.,.],[.,.]]] => 2
[[],[],[[[]],[]]] => [[[.,.],.],[[.,[.,.]],.]] => 2
[[],[],[[[],[]]]] => [[[.,.],.],[.,[[.,.],.]]] => 2
[[],[],[[[[]]]]] => [[[.,.],.],[.,[.,[.,.]]]] => 3
[[],[[]],[],[],[]] => [[[[[.,.],[.,.]],.],.],.] => 1
[[],[[]],[],[[]]] => [[[[.,.],[.,.]],.],[.,.]] => 2
[[],[[]],[[]],[]] => [[[[.,.],[.,.]],[.,.]],.] => 2
[[],[[]],[[],[]]] => [[[.,.],[.,.]],[[.,.],.]] => 2
[[],[[]],[[[]]]] => [[[.,.],[.,.]],[.,[.,.]]] => 3
[[],[[],[]],[],[]] => [[[[.,.],[[.,.],.]],.],.] => 1
[[],[[[]]],[],[]] => [[[[.,.],[.,[.,.]]],.],.] => 2
[[],[[],[]],[[]]] => [[[.,.],[[.,.],.]],[.,.]] => 2
[[],[[[]]],[[]]] => [[[.,.],[.,[.,.]]],[.,.]] => 3
[[],[[],[],[]],[]] => [[[.,.],[[[.,.],.],.]],.] => 1
[[],[[],[[]]],[]] => [[[.,.],[[.,.],[.,.]]],.] => 2
[[],[[[]],[]],[]] => [[[.,.],[[.,[.,.]],.]],.] => 2
[[],[[[],[]]],[]] => [[[.,.],[.,[[.,.],.]]],.] => 2
[[],[[[[]]]],[]] => [[[.,.],[.,[.,[.,.]]]],.] => 3
[[],[[],[],[],[]]] => [[.,.],[[[[.,.],.],.],.]] => 1
[[],[[],[],[[]]]] => [[.,.],[[[.,.],.],[.,.]]] => 2
[[],[[],[[]],[]]] => [[.,.],[[[.,.],[.,.]],.]] => 2
[[],[[],[[],[]]]] => [[.,.],[[.,.],[[.,.],.]]] => 2
[[],[[],[[[]]]]] => [[.,.],[[.,.],[.,[.,.]]]] => 3
[[],[[[]],[],[]]] => [[.,.],[[[.,[.,.]],.],.]] => 2
[[],[[[]],[[]]]] => [[.,.],[[.,[.,.]],[.,.]]] => 3
[[],[[[],[]],[]]] => [[.,.],[[.,[[.,.],.]],.]] => 2
[[],[[[[]]],[]]] => [[.,.],[[.,[.,[.,.]]],.]] => 3
[[],[[[],[],[]]]] => [[.,.],[.,[[[.,.],.],.]]] => 2
>>> Load all 195 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of left oriented leafs of a binary tree except the first one.
In other other words, this is the sum of canopee vector of the tree.
The canopee of a non empty binary tree T with n internal nodes is the list l of 0 and 1 of length n-1 obtained by going along the leaves of T from left to right except the two extremal ones, writing 0 if the leaf is a right leaf and 1 if the leaf is a left leaf.
This is also the number of nodes having a right child. Indeed each of said right children will give exactly one left oriented leaf.
In other other words, this is the sum of canopee vector of the tree.
The canopee of a non empty binary tree T with n internal nodes is the list l of 0 and 1 of length n-1 obtained by going along the leaves of T from left to right except the two extremal ones, writing 0 if the leaf is a right leaf and 1 if the leaf is a left leaf.
This is also the number of nodes having a right child. Indeed each of said right children will give exactly one left oriented leaf.
Map
to binary tree: left brother = left child
Description
Return a binary tree of size n−1 (where n is the size of t, and where t is an ordered tree) by the following recursive rule:
- if x is the left brother of y in t, then x becomes the left child of y;
- if x is the last child of y in t, then x becomes the right child of y,
and removing the root of t.
- if x is the left brother of y in t, then x becomes the left child of y;
- if x is the last child of y in t, then x becomes the right child of y,
and removing the root of t.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!