edit this statistic or download as text // json
Identifier
Values
[[]] => 1
[[],[]] => 2
[[[]]] => 1
[[],[],[]] => 6
[[],[[]]] => 3
[[[]],[]] => 3
[[[],[]]] => 2
[[[[]]]] => 1
[[],[],[],[]] => 24
[[],[],[[]]] => 12
[[],[[]],[]] => 12
[[],[[],[]]] => 8
[[],[[[]]]] => 4
[[[]],[],[]] => 12
[[[]],[[]]] => 6
[[[],[]],[]] => 8
[[[[]]],[]] => 4
[[[],[],[]]] => 6
[[[],[[]]]] => 3
[[[[]],[]]] => 3
[[[[],[]]]] => 2
[[[[[]]]]] => 1
[[],[],[],[],[]] => 120
[[],[],[],[[]]] => 60
[[],[],[[]],[]] => 60
[[],[],[[],[]]] => 40
[[],[],[[[]]]] => 20
[[],[[]],[],[]] => 60
[[],[[]],[[]]] => 30
[[],[[],[]],[]] => 40
[[],[[[]]],[]] => 20
[[],[[],[],[]]] => 30
[[],[[],[[]]]] => 15
[[],[[[]],[]]] => 15
[[],[[[],[]]]] => 10
[[],[[[[]]]]] => 5
[[[]],[],[],[]] => 60
[[[]],[],[[]]] => 30
[[[]],[[]],[]] => 30
[[[]],[[],[]]] => 20
[[[]],[[[]]]] => 10
[[[],[]],[],[]] => 40
[[[[]]],[],[]] => 20
[[[],[]],[[]]] => 20
[[[[]]],[[]]] => 10
[[[],[],[]],[]] => 30
[[[],[[]]],[]] => 15
[[[[]],[]],[]] => 15
[[[[],[]]],[]] => 10
[[[[[]]]],[]] => 5
[[[],[],[],[]]] => 24
[[[],[],[[]]]] => 12
[[[],[[]],[]]] => 12
[[[],[[],[]]]] => 8
[[[],[[[]]]]] => 4
[[[[]],[],[]]] => 12
[[[[]],[[]]]] => 6
[[[[],[]],[]]] => 8
[[[[[]]],[]]] => 4
[[[[],[],[]]]] => 6
[[[[],[[]]]]] => 3
[[[[[]],[]]]] => 3
[[[[[],[]]]]] => 2
[[[[[[]]]]]] => 1
[[],[],[],[],[],[]] => 720
[[],[],[],[],[[]]] => 360
[[],[],[],[[]],[]] => 360
[[],[],[],[[],[]]] => 240
[[],[],[],[[[]]]] => 120
[[],[],[[]],[],[]] => 360
[[],[],[[]],[[]]] => 180
[[],[],[[],[]],[]] => 240
[[],[],[[[]]],[]] => 120
[[],[],[[],[],[]]] => 180
[[],[],[[],[[]]]] => 90
[[],[],[[[]],[]]] => 90
[[],[],[[[],[]]]] => 60
[[],[],[[[[]]]]] => 30
[[],[[]],[],[],[]] => 360
[[],[[]],[],[[]]] => 180
[[],[[]],[[]],[]] => 180
[[],[[]],[[],[]]] => 120
[[],[[]],[[[]]]] => 60
[[],[[],[]],[],[]] => 240
[[],[[[]]],[],[]] => 120
[[],[[],[]],[[]]] => 120
[[],[[[]]],[[]]] => 60
[[],[[],[],[]],[]] => 180
[[],[[],[[]]],[]] => 90
[[],[[[]],[]],[]] => 90
[[],[[[],[]]],[]] => 60
[[],[[[[]]]],[]] => 30
[[],[[],[],[],[]]] => 144
[[],[[],[],[[]]]] => 72
[[],[[],[[]],[]]] => 72
[[],[[],[[],[]]]] => 48
[[],[[],[[[]]]]] => 24
[[],[[[]],[],[]]] => 72
[[],[[[]],[[]]]] => 36
[[],[[[],[]],[]]] => 48
[[],[[[[]]],[]]] => 24
>>> Load all 438 entries. <<<
[[],[[[],[],[]]]] => 36
[[],[[[],[[]]]]] => 18
[[],[[[[]],[]]]] => 18
[[],[[[[],[]]]]] => 12
[[],[[[[[]]]]]] => 6
[[[]],[],[],[],[]] => 360
[[[]],[],[],[[]]] => 180
[[[]],[],[[]],[]] => 180
[[[]],[],[[],[]]] => 120
[[[]],[],[[[]]]] => 60
[[[]],[[]],[],[]] => 180
[[[]],[[]],[[]]] => 90
[[[]],[[],[]],[]] => 120
[[[]],[[[]]],[]] => 60
[[[]],[[],[],[]]] => 90
[[[]],[[],[[]]]] => 45
[[[]],[[[]],[]]] => 45
[[[]],[[[],[]]]] => 30
[[[]],[[[[]]]]] => 15
[[[],[]],[],[],[]] => 240
[[[[]]],[],[],[]] => 120
[[[],[]],[],[[]]] => 120
[[[[]]],[],[[]]] => 60
[[[],[]],[[]],[]] => 120
[[[[]]],[[]],[]] => 60
[[[],[]],[[],[]]] => 80
[[[],[]],[[[]]]] => 40
[[[[]]],[[],[]]] => 40
[[[[]]],[[[]]]] => 20
[[[],[],[]],[],[]] => 180
[[[],[[]]],[],[]] => 90
[[[[]],[]],[],[]] => 90
[[[[],[]]],[],[]] => 60
[[[[[]]]],[],[]] => 30
[[[],[],[]],[[]]] => 90
[[[],[[]]],[[]]] => 45
[[[[]],[]],[[]]] => 45
[[[[],[]]],[[]]] => 30
[[[[[]]]],[[]]] => 15
[[[],[],[],[]],[]] => 144
[[[],[],[[]]],[]] => 72
[[[],[[]],[]],[]] => 72
[[[],[[],[]]],[]] => 48
[[[],[[[]]]],[]] => 24
[[[[]],[],[]],[]] => 72
[[[[]],[[]]],[]] => 36
[[[[],[]],[]],[]] => 48
[[[[[]]],[]],[]] => 24
[[[[],[],[]]],[]] => 36
[[[[],[[]]]],[]] => 18
[[[[[]],[]]],[]] => 18
[[[[[],[]]]],[]] => 12
[[[[[[]]]]],[]] => 6
[[[],[],[],[],[]]] => 120
[[[],[],[],[[]]]] => 60
[[[],[],[[]],[]]] => 60
[[[],[],[[],[]]]] => 40
[[[],[],[[[]]]]] => 20
[[[],[[]],[],[]]] => 60
[[[],[[]],[[]]]] => 30
[[[],[[],[]],[]]] => 40
[[[],[[[]]],[]]] => 20
[[[],[[],[],[]]]] => 30
[[[],[[],[[]]]]] => 15
[[[],[[[]],[]]]] => 15
[[[],[[[],[]]]]] => 10
[[[],[[[[]]]]]] => 5
[[[[]],[],[],[]]] => 60
[[[[]],[],[[]]]] => 30
[[[[]],[[]],[]]] => 30
[[[[]],[[],[]]]] => 20
[[[[]],[[[]]]]] => 10
[[[[],[]],[],[]]] => 40
[[[[[]]],[],[]]] => 20
[[[[],[]],[[]]]] => 20
[[[[[]]],[[]]]] => 10
[[[[],[],[]],[]]] => 30
[[[[],[[]]],[]]] => 15
[[[[[]],[]],[]]] => 15
[[[[[],[]]],[]]] => 10
[[[[[[]]]],[]]] => 5
[[[[],[],[],[]]]] => 24
[[[[],[],[[]]]]] => 12
[[[[],[[]],[]]]] => 12
[[[[],[[],[]]]]] => 8
[[[[],[[[]]]]]] => 4
[[[[[]],[],[]]]] => 12
[[[[[]],[[]]]]] => 6
[[[[[],[]],[]]]] => 8
[[[[[[]]],[]]]] => 4
[[[[[],[],[]]]]] => 6
[[[[[],[[]]]]]] => 3
[[[[[[]],[]]]]] => 3
[[[[[[],[]]]]]] => 2
[[[[[[[]]]]]]] => 1
[[],[[],[[[[]]]]]] => 35
[[],[[[[[]]]],[]]] => 35
[[],[[[],[[],[]]]]] => 56
[[],[[[],[[[]]]]]] => 28
[[],[[[[]],[[]]]]] => 42
[[],[[[[],[]],[]]]] => 56
[[],[[[[[]]],[]]]] => 28
[[],[[[[],[],[]]]]] => 42
[[],[[[[],[[]]]]]] => 21
[[],[[[[[]],[]]]]] => 21
[[],[[[[[],[]]]]]] => 14
[[],[[[[[[]]]]]]] => 7
[[[]],[[[[[]]]]]] => 21
[[[[[[]]]]],[[]]] => 21
[[[],[[[[]]]]],[]] => 35
[[[[[[]]]],[]],[]] => 35
[[[[],[[],[]]]],[]] => 56
[[[[],[[[]]]]],[]] => 28
[[[[[]],[[]]]],[]] => 42
[[[[[],[]],[]]],[]] => 56
[[[[[[]]],[]]],[]] => 28
[[[[[],[],[]]]],[]] => 42
[[[[[],[[]]]]],[]] => 21
[[[[[[]],[]]]],[]] => 21
[[[[[[],[]]]]],[]] => 14
[[[[[[[]]]]]],[]] => 7
[[],[[],[[],[[],[]]]]] => 384
[[],[[],[[[],[]],[]]]] => 384
[[],[[[],[]],[[],[]]]] => 640
[[],[[[],[[],[]]],[]]] => 384
[[],[[[[],[]],[]],[]]] => 384
[[],[[[[],[[[]]]]]]] => 32
[[],[[[[[[]]],[]]]]] => 32
[[],[[[[[],[],[]]]]]] => 48
[[],[[[[[],[[]]]]]]] => 24
[[],[[[[[[]],[]]]]]] => 24
[[],[[[[[[],[]]]]]]] => 16
[[],[[[[[[[]]]]]]]] => 8
[[[],[]],[[],[[],[]]]] => 896
[[[],[]],[[[],[]],[]]] => 896
[[[],[[],[]]],[[],[]]] => 896
[[[[],[]],[]],[[],[]]] => 896
[[[],[[],[[],[]]]],[]] => 384
[[[],[[[],[]],[]]],[]] => 384
[[[[],[]],[[],[]]],[]] => 640
[[[[],[[],[]]],[]],[]] => 384
[[[[[],[]],[]],[]],[]] => 384
[[[[[],[[[]]]]]],[]] => 32
[[[[[[[]]],[]]]],[]] => 32
[[[[[[],[],[]]]]],[]] => 48
[[[[[[],[[]]]]]],[]] => 24
[[[[[[[]],[]]]]],[]] => 24
[[[[[[[],[]]]]]],[]] => 16
[[[[[[[[]]]]]]],[]] => 8
[[[[[[[[[]]]]]]]],[]] => 9
[[],[[[[[[[[]]]]]]]]] => 9
[[[[[[[[],[]]]]]]],[]] => 18
[[],[[[[[[[],[]]]]]]]] => 18
[[[[[[[[]],[]]]]]],[]] => 27
[[[[[[[],[[]]]]]]],[]] => 27
[[],[[[[[[[]],[]]]]]]] => 27
[[],[[[[[[],[[]]]]]]]] => 27
[[],[[],[[],[[],[[],[]]]]]] => 3840
[[],[[],[[],[[[],[]],[]]]]] => 3840
[[],[[],[[[],[]],[[],[]]]]] => 6400
[[],[[],[[[],[[],[]]],[]]]] => 3840
[[],[[],[[[[],[]],[]],[]]]] => 3840
[[],[[[],[]],[[],[[],[]]]]] => 8960
[[],[[[],[]],[[[],[]],[]]]] => 8960
[[],[[[],[[],[]]],[[],[]]]] => 8960
[[],[[[[],[]],[]],[[],[]]]] => 8960
[[],[[[],[[],[[],[]]]],[]]] => 3840
[[],[[[],[[[],[]],[]]],[]]] => 3840
[[],[[[[],[]],[[],[]]],[]]] => 6400
[[],[[[[],[[],[]]],[]],[]]] => 3840
[[],[[[[[],[]],[]],[]],[]]] => 3840
[[[],[]],[[],[[],[[],[]]]]] => 11520
[[[],[]],[[],[[[],[]],[]]]] => 11520
[[[],[]],[[[],[]],[[],[]]]] => 19200
[[[],[]],[[[],[[],[]]],[]]] => 11520
[[[],[]],[[[[],[]],[]],[]]] => 11520
[[[],[[],[]]],[[],[[],[]]]] => 16128
[[[],[[],[]]],[[[],[]],[]]] => 16128
[[[[],[]],[]],[[],[[],[]]]] => 16128
[[[[],[]],[]],[[[],[]],[]]] => 16128
[[[],[[],[[],[]]]],[[],[]]] => 11520
[[[],[[[],[]],[]]],[[],[]]] => 11520
[[[[],[]],[[],[]]],[[],[]]] => 19200
[[[[],[[],[]]],[]],[[],[]]] => 11520
[[[[[],[]],[]],[]],[[],[]]] => 11520
[[[],[[],[[],[[],[]]]]],[]] => 3840
[[[],[[],[[[],[]],[]]]],[]] => 3840
[[[],[[[],[]],[[],[]]]],[]] => 6400
[[[],[[[],[[],[]]],[]]],[]] => 3840
[[[],[[[[],[]],[]],[]]],[]] => 3840
[[[[],[]],[[],[[],[]]]],[]] => 8960
[[[[],[]],[[[],[]],[]]],[]] => 8960
[[[[],[[],[]]],[[],[]]],[]] => 8960
[[[[[],[]],[]],[[],[]]],[]] => 8960
[[[[],[[],[[],[]]]],[]],[]] => 3840
[[[[],[[[],[]],[]]],[]],[]] => 3840
[[[[[],[]],[[],[]]],[]],[]] => 6400
[[[[[],[[],[]]],[]],[]],[]] => 3840
[[[[[[],[]],[]],[]],[]],[]] => 3840
[[[[[[[[[[]]]]]]]]],[]] => 10
[[],[[[[[[[[[]]]]]]]]]] => 10
[[[[[[[[[],[]]]]]]]],[]] => 20
[[],[[[[[[[[],[]]]]]]]]] => 20
[[[[[[[[[[[]]]]]]]]]],[]] => 11
[[],[[[[[[[[[[]]]]]]]]]]] => 11
[[],[[],[[],[[],[[],[[],[]]]]]]] => 46080
[[],[[],[[],[[],[[[],[]],[]]]]]] => 46080
[[],[[],[[],[[[],[]],[[],[]]]]]] => 76800
[[],[[],[[],[[[],[[],[]]],[]]]]] => 46080
[[],[[],[[],[[[[],[]],[]],[]]]]] => 46080
[[],[[],[[[],[]],[[],[[],[]]]]]] => 107520
[[],[[],[[[],[]],[[[],[]],[]]]]] => 107520
[[],[[],[[[],[[],[]]],[[],[]]]]] => 107520
[[],[[],[[[[],[]],[]],[[],[]]]]] => 107520
[[],[[],[[[],[[],[[],[]]]],[]]]] => 46080
[[],[[],[[[],[[[],[]],[]]],[]]]] => 46080
[[],[[],[[[[],[]],[[],[]]],[]]]] => 76800
[[],[[],[[[[],[[],[]]],[]],[]]]] => 46080
[[],[[],[[[[[],[]],[]],[]],[]]]] => 46080
[[],[[[],[]],[[],[[],[[],[]]]]]] => 138240
[[],[[[],[]],[[],[[[],[]],[]]]]] => 138240
[[],[[[],[]],[[[],[]],[[],[]]]]] => 230400
[[],[[[],[]],[[[],[[],[]]],[]]]] => 138240
[[],[[[],[]],[[[[],[]],[]],[]]]] => 138240
[[],[[[],[[],[]]],[[],[[],[]]]]] => 193536
[[],[[[],[[],[]]],[[[],[]],[]]]] => 193536
[[],[[[[],[]],[]],[[],[[],[]]]]] => 193536
[[],[[[[],[]],[]],[[[],[]],[]]]] => 193536
[[],[[[],[[],[[],[]]]],[[],[]]]] => 138240
[[],[[[],[[[],[]],[]]],[[],[]]]] => 138240
[[],[[[[],[]],[[],[]]],[[],[]]]] => 230400
[[],[[[[],[[],[]]],[]],[[],[]]]] => 138240
[[],[[[[[],[]],[]],[]],[[],[]]]] => 138240
[[],[[[],[[],[[],[[],[]]]]],[]]] => 46080
[[],[[[],[[],[[[],[]],[]]]],[]]] => 46080
[[],[[[],[[[],[]],[[],[]]]],[]]] => 76800
[[],[[[],[[[],[[],[]]],[]]],[]]] => 46080
[[],[[[],[[[[],[]],[]],[]]],[]]] => 46080
[[],[[[[],[]],[[],[[],[]]]],[]]] => 107520
[[],[[[[],[]],[[[],[]],[]]],[]]] => 107520
[[],[[[[],[[],[]]],[[],[]]],[]]] => 107520
[[],[[[[[],[]],[]],[[],[]]],[]]] => 107520
[[],[[[[],[[],[[],[]]]],[]],[]]] => 46080
[[],[[[[],[[[],[]],[]]],[]],[]]] => 46080
[[],[[[[[],[]],[[],[]]],[]],[]]] => 76800
[[],[[[[[],[[],[]]],[]],[]],[]]] => 46080
[[],[[[[[[],[]],[]],[]],[]],[]]] => 46080
[[[],[]],[[],[[],[[],[[],[]]]]]] => 168960
[[[],[]],[[],[[],[[[],[]],[]]]]] => 168960
[[[],[]],[[],[[[],[]],[[],[]]]]] => 281600
[[[],[]],[[],[[[],[[],[]]],[]]]] => 168960
[[[],[]],[[],[[[[],[]],[]],[]]]] => 168960
[[[],[]],[[[],[]],[[],[[],[]]]]] => 394240
[[[],[]],[[[],[]],[[[],[]],[]]]] => 394240
[[[],[]],[[[],[[],[]]],[[],[]]]] => 394240
[[[],[]],[[[[],[]],[]],[[],[]]]] => 394240
[[[],[]],[[[],[[],[[],[]]]],[]]] => 168960
[[[],[]],[[[],[[[],[]],[]]],[]]] => 168960
[[[],[]],[[[[],[]],[[],[]]],[]]] => 281600
[[[],[]],[[[[],[[],[]]],[]],[]]] => 168960
[[[],[]],[[[[[],[]],[]],[]],[]]] => 168960
[[[],[[],[]]],[[],[[],[[],[]]]]] => 304128
[[[],[[],[]]],[[],[[[],[]],[]]]] => 304128
[[[],[[],[]]],[[[],[]],[[],[]]]] => 506880
[[[],[[],[]]],[[[],[[],[]]],[]]] => 304128
[[[],[[],[]]],[[[[],[]],[]],[]]] => 304128
[[[[],[]],[]],[[],[[],[[],[]]]]] => 304128
[[[[],[]],[]],[[],[[[],[]],[]]]] => 304128
[[[[],[]],[]],[[[],[]],[[],[]]]] => 506880
[[[[],[]],[]],[[[],[[],[]]],[]]] => 304128
[[[[],[]],[]],[[[[],[]],[]],[]]] => 304128
[[[],[[],[[],[]]]],[[],[[],[]]]] => 304128
[[[],[[],[[],[]]]],[[[],[]],[]]] => 304128
[[[],[[[],[]],[]]],[[],[[],[]]]] => 304128
[[[],[[[],[]],[]]],[[[],[]],[]]] => 304128
[[[[],[]],[[],[]]],[[],[[],[]]]] => 506880
[[[[],[]],[[],[]]],[[[],[]],[]]] => 506880
[[[[],[[],[]]],[]],[[],[[],[]]]] => 304128
[[[[],[[],[]]],[]],[[[],[]],[]]] => 304128
[[[[[],[]],[]],[]],[[],[[],[]]]] => 304128
[[[[[],[]],[]],[]],[[[],[]],[]]] => 304128
[[[],[[],[[],[[],[]]]]],[[],[]]] => 168960
[[[],[[],[[[],[]],[]]]],[[],[]]] => 168960
[[[],[[[],[]],[[],[]]]],[[],[]]] => 281600
[[[],[[[],[[],[]]],[]]],[[],[]]] => 168960
[[[],[[[[],[]],[]],[]]],[[],[]]] => 168960
[[[[],[]],[[],[[],[]]]],[[],[]]] => 394240
[[[[],[]],[[[],[]],[]]],[[],[]]] => 394240
[[[[],[[],[]]],[[],[]]],[[],[]]] => 394240
[[[[[],[]],[]],[[],[]]],[[],[]]] => 394240
[[[[],[[],[[],[]]]],[]],[[],[]]] => 168960
[[[[],[[[],[]],[]]],[]],[[],[]]] => 168960
[[[[[],[]],[[],[]]],[]],[[],[]]] => 281600
[[[[[],[[],[]]],[]],[]],[[],[]]] => 168960
[[[[[[],[]],[]],[]],[]],[[],[]]] => 168960
[[[],[[],[[],[[],[[],[]]]]]],[]] => 46080
[[[],[[],[[],[[[],[]],[]]]]],[]] => 46080
[[[],[[],[[[],[]],[[],[]]]]],[]] => 76800
[[[],[[],[[[],[[],[]]],[]]]],[]] => 46080
[[[],[[],[[[[],[]],[]],[]]]],[]] => 46080
[[[],[[[],[]],[[],[[],[]]]]],[]] => 107520
[[[],[[[],[]],[[[],[]],[]]]],[]] => 107520
[[[],[[[],[[],[]]],[[],[]]]],[]] => 107520
[[[],[[[[],[]],[]],[[],[]]]],[]] => 107520
[[[],[[[],[[],[[],[]]]],[]]],[]] => 46080
[[[],[[[],[[[],[]],[]]],[]]],[]] => 46080
[[[],[[[[],[]],[[],[]]],[]]],[]] => 76800
[[[],[[[[],[[],[]]],[]],[]]],[]] => 46080
[[[],[[[[[],[]],[]],[]],[]]],[]] => 46080
[[[[],[]],[[],[[],[[],[]]]]],[]] => 138240
[[[[],[]],[[],[[[],[]],[]]]],[]] => 138240
[[[[],[]],[[[],[]],[[],[]]]],[]] => 230400
[[[[],[]],[[[],[[],[]]],[]]],[]] => 138240
[[[[],[]],[[[[],[]],[]],[]]],[]] => 138240
[[[[],[[],[]]],[[],[[],[]]]],[]] => 193536
[[[[],[[],[]]],[[[],[]],[]]],[]] => 193536
[[[[[],[]],[]],[[],[[],[]]]],[]] => 193536
[[[[[],[]],[]],[[[],[]],[]]],[]] => 193536
[[[[],[[],[[],[]]]],[[],[]]],[]] => 138240
[[[[],[[[],[]],[]]],[[],[]]],[]] => 138240
[[[[[],[]],[[],[]]],[[],[]]],[]] => 230400
[[[[[],[[],[]]],[]],[[],[]]],[]] => 138240
[[[[[[],[]],[]],[]],[[],[]]],[]] => 138240
[[[[],[[],[[],[[],[]]]]],[]],[]] => 46080
[[[[],[[],[[[],[]],[]]]],[]],[]] => 46080
[[[[],[[[],[]],[[],[]]]],[]],[]] => 76800
[[[[],[[[],[[],[]]],[]]],[]],[]] => 46080
[[[[],[[[[],[]],[]],[]]],[]],[]] => 46080
[[[[[],[]],[[],[[],[]]]],[]],[]] => 107520
[[[[[],[]],[[[],[]],[]]],[]],[]] => 107520
[[[[[],[[],[]]],[[],[]]],[]],[]] => 107520
[[[[[[],[]],[]],[[],[]]],[]],[]] => 107520
[[[[[],[[],[[],[]]]],[]],[]],[]] => 46080
[[[[[],[[[],[]],[]]],[]],[]],[]] => 46080
[[[[[[],[]],[[],[]]],[]],[]],[]] => 76800
[[[[[[],[[],[]]],[]],[]],[]],[]] => 46080
[[[[[[[],[]],[]],[]],[]],[]],[]] => 46080
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of linear extensions of the tree.
We use Knuth's hook length formula for trees [pg.70, 1]. For an ordered tree $T$ on $n$ vertices, the number of linear extensions is
$$ \frac{n!}{\prod_{v\in T}|T_v|}, $$
where $T_v$ is the number of vertices of the subtree rooted at $v$.
References
[1] Knuth, D. E. The art of computer programming. Volume 3 MathSciNet:0445948
Code
def tree_hook_product(tree):
    hook_products = [tree_hook_product(t) for t in tree]
    return prod(hook_products)*tree.node_number()
    
def tree_hook_formula(tree):
    return factorial(tree.node_number())/tree_hook_product(tree)

def statistic(t):
    return tree_hook_formula(t)
Created
Jun 13, 2013 at 10:24 by Viviane Pons
Updated
Mar 20, 2019 at 00:53 by Martin Rubey