edit this statistic or download as text // json
Identifier
Values
=>
Cc0020;cc-rep
([],1)=>1 ([],2)=>2 ([(0,1)],2)=>2 ([],3)=>3 ([(1,2)],3)=>4 ([(0,2),(1,2)],3)=>4 ([(0,1),(0,2),(1,2)],3)=>3 ([],4)=>4 ([(2,3)],4)=>6 ([(1,3),(2,3)],4)=>7 ([(0,3),(1,3),(2,3)],4)=>6 ([(0,3),(1,2)],4)=>5 ([(0,3),(1,2),(2,3)],4)=>6 ([(1,2),(1,3),(2,3)],4)=>6 ([(0,3),(1,2),(1,3),(2,3)],4)=>7 ([(0,2),(0,3),(1,2),(1,3)],4)=>5 ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>6 ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>4 ([],5)=>5 ([(3,4)],5)=>8 ([(2,4),(3,4)],5)=>10 ([(1,4),(2,4),(3,4)],5)=>10 ([(0,4),(1,4),(2,4),(3,4)],5)=>8 ([(1,4),(2,3)],5)=>8 ([(1,4),(2,3),(3,4)],5)=>10 ([(0,1),(2,4),(3,4)],5)=>10 ([(2,3),(2,4),(3,4)],5)=>9 ([(0,4),(1,4),(2,3),(3,4)],5)=>11 ([(1,4),(2,3),(2,4),(3,4)],5)=>12 ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)=>11 ([(1,3),(1,4),(2,3),(2,4)],5)=>9 ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)=>11 ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>11 ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>11 ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>12 ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)=>8 ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>9 ([(0,4),(1,3),(2,3),(2,4)],5)=>10 ([(0,1),(2,3),(2,4),(3,4)],5)=>8 ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)=>11 ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)=>9 ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)=>7 ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>10 ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)=>10 ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)=>11 ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>8 ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>10 ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>10 ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)=>10 ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)=>8 ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>8 ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>5 ([],6)=>6 ([(4,5)],6)=>10 ([(3,5),(4,5)],6)=>13 ([(2,5),(3,5),(4,5)],6)=>14 ([(1,5),(2,5),(3,5),(4,5)],6)=>13 ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)=>10 ([(2,5),(3,4)],6)=>11 ([(2,5),(3,4),(4,5)],6)=>14 ([(1,2),(3,5),(4,5)],6)=>15 ([(3,4),(3,5),(4,5)],6)=>12 ([(1,5),(2,5),(3,4),(4,5)],6)=>17 ([(0,1),(2,5),(3,5),(4,5)],6)=>15 ([(2,5),(3,4),(3,5),(4,5)],6)=>17 ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)=>16 ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>18 ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>15 ([(2,4),(2,5),(3,4),(3,5)],6)=>13 ([(0,5),(1,5),(2,4),(3,4)],6)=>13 ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>18 ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)=>18 ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>16 ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>18 ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)=>14 ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>17 ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>20 ([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>19 ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>18 ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>14 ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>16 ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>16 ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>16 ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>17 ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>17 ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>11 ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>12 ([(0,5),(1,4),(2,3)],6)=>9 ([(1,5),(2,4),(3,4),(3,5)],6)=>16 ([(0,1),(2,5),(3,4),(4,5)],6)=>14 ([(1,2),(3,4),(3,5),(4,5)],6)=>13 ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)=>16 ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>19 ([(0,1),(2,5),(3,4),(3,5),(4,5)],6)=>17 ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>20 ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>16 ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>15 ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)=>12 ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>15 ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>18 ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)=>16 ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>19 ([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)=>14 ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>20 ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>21 ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>18 ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>18 ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)=>14 ([(0,1),(2,4),(2,5),(3,4),(3,5)],6)=>13 ([(0,5),(1,5),(2,3),(2,4),(3,4)],6)=>15 ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)=>18 ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)=>19 ([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)=>20 ([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>16 ([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>19 ([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)=>20 ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)=>21 ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>19 ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>18 ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>12 ([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>19 ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>17 ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>16 ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>15 ([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)=>19 ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>19 ([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>21 ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>18 ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>19 ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>21 ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>18 ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>17 ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>20 ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>16 ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>16 ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>16 ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>18 ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>19 ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>15 ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>16 ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)=>11 ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)=>14 ([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)=>17 ([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>17 ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>18 ([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>22 ([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>22 ([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>20 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>17 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>18 ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)=>13 ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>20 ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>19 ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>19 ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>19 ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>20 ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>15 ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>19 ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>18 ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>20 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>14 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>18 ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>17 ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)=>9 ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>15 ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>17 ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>13 ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>12 ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)=>9 ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)=>19 ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)=>13 ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>11 ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>16 ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>16 ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>14 ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)=>14 ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>18 ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>17 ([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>15 ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>16 ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>18 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>13 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>13 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6)=>17 ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>15 ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>16 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>12 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)=>11 ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>14 ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>16 ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>16 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>14 ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>18 ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>14 ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>17 ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>16 ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>10 ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>13 ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>14 ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>13 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>14 ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>15 ([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>13 ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>15 ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>9 ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>11 ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>10 ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of induced subgraphs.
A subgraph $H \subseteq G$ is induced if $E(H)$ consists of all edges in $E(G)$ that connect the vertices of $H$.
Code
def statistic(G):
    return sum(1 for k in range(1, G.num_verts()+1) for g in graphs(k) if G.subgraph_search(g, True) is not None)
Created
Jun 13, 2013 at 11:19 by Travis Scrimshaw
Updated
Dec 17, 2015 at 06:40 by Matthew Donahue