Values
=>
Cc0020;cc-rep
([],1)=>1
([],2)=>2
([(0,1)],2)=>2
([],3)=>3
([(1,2)],3)=>4
([(0,2),(1,2)],3)=>4
([(0,1),(0,2),(1,2)],3)=>3
([],4)=>4
([(2,3)],4)=>6
([(1,3),(2,3)],4)=>7
([(0,3),(1,3),(2,3)],4)=>6
([(0,3),(1,2)],4)=>5
([(0,3),(1,2),(2,3)],4)=>6
([(1,2),(1,3),(2,3)],4)=>6
([(0,3),(1,2),(1,3),(2,3)],4)=>7
([(0,2),(0,3),(1,2),(1,3)],4)=>5
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>6
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>4
([],5)=>5
([(3,4)],5)=>8
([(2,4),(3,4)],5)=>10
([(1,4),(2,4),(3,4)],5)=>10
([(0,4),(1,4),(2,4),(3,4)],5)=>8
([(1,4),(2,3)],5)=>8
([(1,4),(2,3),(3,4)],5)=>10
([(0,1),(2,4),(3,4)],5)=>10
([(2,3),(2,4),(3,4)],5)=>9
([(0,4),(1,4),(2,3),(3,4)],5)=>11
([(1,4),(2,3),(2,4),(3,4)],5)=>12
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)=>11
([(1,3),(1,4),(2,3),(2,4)],5)=>9
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)=>11
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>11
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>11
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>12
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)=>8
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>9
([(0,4),(1,3),(2,3),(2,4)],5)=>10
([(0,1),(2,3),(2,4),(3,4)],5)=>8
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)=>11
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)=>9
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)=>7
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>10
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)=>10
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)=>11
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>8
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>10
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>10
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)=>10
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)=>8
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>8
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>5
([],6)=>6
([(4,5)],6)=>10
([(3,5),(4,5)],6)=>13
([(2,5),(3,5),(4,5)],6)=>14
([(1,5),(2,5),(3,5),(4,5)],6)=>13
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)=>10
([(2,5),(3,4)],6)=>11
([(2,5),(3,4),(4,5)],6)=>14
([(1,2),(3,5),(4,5)],6)=>15
([(3,4),(3,5),(4,5)],6)=>12
([(1,5),(2,5),(3,4),(4,5)],6)=>17
([(0,1),(2,5),(3,5),(4,5)],6)=>15
([(2,5),(3,4),(3,5),(4,5)],6)=>17
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)=>16
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>18
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>15
([(2,4),(2,5),(3,4),(3,5)],6)=>13
([(0,5),(1,5),(2,4),(3,4)],6)=>13
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>18
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)=>18
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>16
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>18
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)=>14
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>17
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>20
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>19
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>18
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>14
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>16
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>16
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>16
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>17
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>17
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>11
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>12
([(0,5),(1,4),(2,3)],6)=>9
([(1,5),(2,4),(3,4),(3,5)],6)=>16
([(0,1),(2,5),(3,4),(4,5)],6)=>14
([(1,2),(3,4),(3,5),(4,5)],6)=>13
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)=>16
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>19
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)=>17
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>20
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>16
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>15
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)=>12
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>15
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>18
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)=>16
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>19
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)=>14
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>20
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>21
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>18
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>18
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)=>14
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)=>13
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)=>15
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)=>18
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)=>19
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)=>20
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>16
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>19
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)=>20
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)=>21
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>19
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>18
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>12
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>19
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>17
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>16
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>15
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)=>19
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>19
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>21
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>18
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>19
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>21
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>18
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>17
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>20
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>16
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>16
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>16
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>18
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>19
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>15
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>16
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)=>11
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)=>14
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)=>17
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>17
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>18
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>22
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>22
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>20
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>17
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>18
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)=>13
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>20
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>19
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>19
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>19
([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>20
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>15
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>19
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>18
([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>20
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>14
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>18
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>17
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)=>9
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>15
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>17
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>13
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>12
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)=>9
([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)=>19
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)=>13
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>11
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>16
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>16
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>14
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)=>14
([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>18
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>17
([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>15
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>16
([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>18
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>13
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>13
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6)=>17
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>15
([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>16
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>12
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)=>11
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>14
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>16
([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>16
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>14
([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>18
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>14
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>17
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>16
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>10
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>13
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>14
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>13
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>14
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>15
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>13
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>15
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>9
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>11
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>10
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of induced subgraphs.
A subgraph $H \subseteq G$ is induced if $E(H)$ consists of all edges in $E(G)$ that connect the vertices of $H$.
A subgraph $H \subseteq G$ is induced if $E(H)$ consists of all edges in $E(G)$ that connect the vertices of $H$.
Code
def statistic(G): return sum(1 for k in range(1, G.num_verts()+1) for g in graphs(k) if G.subgraph_search(g, True) is not None)
Created
Jun 13, 2013 at 11:19 by Travis Scrimshaw
Updated
Dec 17, 2015 at 06:40 by Matthew Donahue
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!