Identifier
- St000088: Integer partitions ⟶ ℤ
Values
=>
Cc0002;cc-rep
[]=>1
[1]=>1
[2]=>2
[1,1]=>0
[3]=>3
[2,1]=>1
[1,1,1]=>1
[4]=>5
[3,1]=>2
[2,2]=>3
[2,1,1]=>2
[1,1,1,1]=>1
[5]=>7
[4,1]=>5
[3,2]=>6
[3,1,1]=>5
[2,2,1]=>4
[2,1,1,1]=>3
[1,1,1,1,1]=>1
[6]=>11
[5,1]=>8
[4,2]=>15
[4,1,1]=>10
[3,3]=>4
[3,2,1]=>13
[3,1,1,1]=>10
[2,2,2]=>8
[2,2,1,1]=>5
[2,1,1,1,1]=>4
[1,1,1,1,1,1]=>1
[7]=>15
[6,1]=>15
[5,2]=>26
[5,1,1]=>19
[4,3]=>18
[4,2,1]=>36
[4,1,1,1]=>21
[3,3,1]=>18
[3,2,2]=>22
[3,2,1,1]=>28
[3,1,1,1,1]=>13
[2,2,2,1]=>12
[2,2,1,1,1]=>10
[2,1,1,1,1,1]=>5
[1,1,1,1,1,1,1]=>1
[8]=>22
[7,1]=>23
[6,2]=>49
[6,1,1]=>33
[5,3]=>39
[5,2,1]=>78
[5,1,1,1]=>44
[4,4]=>25
[4,3,1]=>70
[4,2,2]=>67
[4,2,1,1]=>81
[4,1,1,1,1]=>34
[3,3,2]=>35
[3,3,1,1]=>53
[3,2,2,1]=>58
[3,2,1,1,1]=>52
[3,1,1,1,1,1]=>17
[2,2,2,2]=>19
[2,2,2,1,1]=>19
[2,2,1,1,1,1]=>17
[2,1,1,1,1,1,1]=>5
[1,1,1,1,1,1,1,1]=>2
[9]=>30
[8,1]=>37
[7,2]=>79
[7,1,1]=>57
[6,3]=>87
[6,2,1]=>154
[6,1,1,1]=>82
[5,4]=>64
[5,3,1]=>188
[5,2,2]=>152
[5,2,1,1]=>201
[5,1,1,1,1]=>75
[4,4,1]=>95
[4,3,2]=>168
[4,3,1,1]=>207
[4,2,2,1]=>203
[4,2,1,1,1]=>169
[4,1,1,1,1,1]=>52
[3,3,3]=>41
[3,3,2,1]=>144
[3,3,1,1,1]=>104
[3,2,2,2]=>81
[3,2,2,1,1]=>130
[3,2,1,1,1,1]=>84
[3,1,1,1,1,1,1]=>23
[2,2,2,2,1]=>34
[2,2,2,1,1,1]=>39
[2,2,1,1,1,1,1]=>21
[2,1,1,1,1,1,1,1]=>7
[1,1,1,1,1,1,1,1,1]=>2
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The row sums of the character table of the symmetric group.
Equivalently, this is the multiplicity of the irreducible representation corresponding to the given partition in the adjoint representation of the symmetric group.
Equivalently, this is the multiplicity of the irreducible representation corresponding to the given partition in the adjoint representation of the symmetric group.
Code
def statistic(L): G = SymmetricGroup(sum(L)) rho = SymmetricGroupRepresentation(L) chi = rho.to_character() return sum( chi(pi) for pi in G.conjugacy_classes_representatives() )
Created
Jun 13, 2013 at 12:58 by Chris Berg
Updated
Apr 17, 2019 at 12:30 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!