Identifier
Values
0 => ([(0,1)],2) => ([(0,1)],2) => ([],2) => 2
1 => ([(0,1)],2) => ([(0,1)],2) => ([],2) => 2
00 => ([(0,2),(2,1)],3) => ([(0,2),(1,2)],3) => ([(1,2)],3) => 2
01 => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,3),(1,2)],4) => 2
10 => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,3),(1,2)],4) => 2
11 => ([(0,2),(2,1)],3) => ([(0,2),(1,2)],3) => ([(1,2)],3) => 2
000 => ([(0,3),(2,1),(3,2)],4) => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(1,2),(2,3)],4) => 2
001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6) => 2
010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6) => 2
011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6) => 2
100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6) => 2
101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6) => 2
110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6) => 2
111 => ([(0,3),(2,1),(3,2)],4) => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(1,2),(2,3)],4) => 2
0000 => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 2
0001 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8) => ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8) => ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,7),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6),(6,7)],8) => 2
0101 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8) => ([(0,4),(0,5),(1,2),(1,3),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8) => ([(0,1),(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,7),(3,4),(3,5),(3,7),(4,5),(4,6),(5,6),(6,7)],8) => 2
0111 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8) => ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8) => ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,7),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6),(6,7)],8) => 2
1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8) => ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8) => ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,7),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6),(6,7)],8) => 2
1010 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8) => ([(0,4),(0,5),(1,2),(1,3),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8) => ([(0,1),(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,7),(3,4),(3,5),(3,7),(4,5),(4,6),(5,6),(6,7)],8) => 2
1110 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8) => ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8) => ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,7),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6),(6,7)],8) => 2
1111 => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 2
00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
000000 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => ([(0,1),(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => ([(0,1),(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The cardinality of a maximal independent set of vertices of a graph.
An independent set of a graph is a set of pairwise non-adjacent vertices. A maximum independent set is an independent set of maximum cardinality. This statistic is also called the independence number or stability number $\alpha(G)$ of $G$.
Map
poset of factors
Description
The poset of factors of a binary word.
This is the partial order on the set of distinct factors of a binary word, such that $u < v$ if and only if $u$ is a factor of $v$.
Map
to graph
Description
Returns the Hasse diagram of the poset as an undirected graph.
Map
complement
Description
The complement of a graph.
The complement of a graph has the same vertices, but exactly those edges that are not in the original graph.