Identifier
Values
0 => ([(0,1)],2) => ([],2) => ([],2) => 1
1 => ([(0,1)],2) => ([],2) => ([],2) => 1
00 => ([(0,2),(2,1)],3) => ([],3) => ([],3) => 1
01 => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(2,3)],4) => ([(2,3)],4) => 2
10 => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(2,3)],4) => ([(2,3)],4) => 2
11 => ([(0,2),(2,1)],3) => ([],3) => ([],3) => 1
000 => ([(0,3),(2,1),(3,2)],4) => ([],4) => ([],4) => 1
001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(2,5),(3,4),(4,5)],6) => ([(2,5),(3,4),(4,5)],6) => 2
010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => ([(2,5),(3,4)],6) => ([(2,5),(3,4)],6) => 2
011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(2,5),(3,4),(4,5)],6) => ([(2,5),(3,4),(4,5)],6) => 2
100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(2,5),(3,4),(4,5)],6) => ([(2,5),(3,4),(4,5)],6) => 2
101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => ([(2,5),(3,4)],6) => ([(2,5),(3,4)],6) => 2
110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(2,5),(3,4),(4,5)],6) => ([(2,5),(3,4),(4,5)],6) => 2
111 => ([(0,3),(2,1),(3,2)],4) => ([],4) => ([],4) => 1
0000 => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => ([],5) => 1
0101 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8) => ([(2,7),(3,6),(4,5)],8) => ([(2,7),(3,6),(4,5)],8) => 2
1010 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8) => ([(2,7),(3,6),(4,5)],8) => ([(2,7),(3,6),(4,5)],8) => 2
1111 => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => ([],5) => 1
00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],6) => 1
01010 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10) => ([(2,9),(3,8),(4,7),(5,6)],10) => ([(2,9),(3,8),(4,7),(5,6)],10) => 2
10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10) => ([(2,9),(3,8),(4,7),(5,6)],10) => ([(2,9),(3,8),(4,7),(5,6)],10) => 2
11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],6) => 1
000000 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],7) => 1
010101 => ([(0,1),(0,2),(1,10),(1,11),(2,10),(2,11),(4,3),(5,3),(6,8),(6,9),(7,8),(7,9),(8,4),(8,5),(9,4),(9,5),(10,6),(10,7),(11,6),(11,7)],12) => ([(2,11),(3,10),(4,9),(5,8),(6,7)],12) => ([(2,11),(3,10),(4,9),(5,8),(6,7)],12) => 2
101010 => ([(0,1),(0,2),(1,10),(1,11),(2,10),(2,11),(4,3),(5,3),(6,8),(6,9),(7,8),(7,9),(8,4),(8,5),(9,4),(9,5),(10,6),(10,7),(11,6),(11,7)],12) => ([(2,11),(3,10),(4,9),(5,8),(6,7)],12) => ([(2,11),(3,10),(4,9),(5,8),(6,7)],12) => 2
111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],7) => 1
0000000 => ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8) => ([],8) => ([],8) => 1
1111111 => ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8) => ([],8) => ([],8) => 1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The order of the largest clique of the graph.
A clique in a graph $G$ is a subset $U \subseteq V(G)$ such that any pair of vertices in $U$ are adjacent. I.e. the subgraph induced by $U$ is a complete graph.
Map
poset of factors
Description
The poset of factors of a binary word.
This is the partial order on the set of distinct factors of a binary word, such that $u < v$ if and only if $u$ is a factor of $v$.
Map
connected complement
Description
The componentwise connected complement of a graph.
For a connected graph $G$, this map returns the complement of $G$ if it is connected, otherwise $G$ itself. If $G$ is not connected, the map is applied to each connected component separately.
Map
incomparability graph
Description
The incomparability graph of a poset.