Processing math: 100%

Identifier
Values
([],1) => ([],1) => ([(0,1)],2) => ([(0,1)],2) => 1
([(0,1)],2) => ([(0,1)],2) => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => ([(0,3),(2,1),(3,2)],4) => ([(0,3),(2,1),(3,2)],4) => 1
([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 2
([(0,3),(2,1),(3,2)],4) => ([(0,3),(2,1),(3,2)],4) => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 1
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8) => ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8) => 1
([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8) => ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8) => ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9) => ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9) => 1
([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9) => ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9) => ([(0,9),(2,4),(3,2),(4,6),(5,3),(6,8),(7,5),(8,1),(9,7)],10) => ([(0,9),(2,4),(3,2),(4,6),(5,3),(6,8),(7,5),(8,1),(9,7)],10) => 1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The number of linear extensions of a poset.
Map
order ideals
Description
The lattice of order ideals of a poset.
An order ideal I in a poset P is a downward closed set, i.e., aI and ba implies bI. This map sends a poset to the lattice of all order ideals sorted by inclusion with meet being intersection and join being union.
Map
to poset
Description
Return the poset corresponding to the lattice.