Identifier
-
Mp00051:
Ordered trees
—to Dyck path⟶
Dyck paths
Mp00137: Dyck paths —to symmetric ASM⟶ Alternating sign matrices
Mp00002: Alternating sign matrices —to left key permutation⟶ Permutations
St000110: Permutations ⟶ ℤ
Values
[[]] => [1,0] => [[1]] => [1] => 1
[[],[]] => [1,0,1,0] => [[1,0],[0,1]] => [1,2] => 1
[[[]]] => [1,1,0,0] => [[0,1],[1,0]] => [2,1] => 2
[[],[],[]] => [1,0,1,0,1,0] => [[1,0,0],[0,1,0],[0,0,1]] => [1,2,3] => 1
[[],[[]]] => [1,0,1,1,0,0] => [[1,0,0],[0,0,1],[0,1,0]] => [1,3,2] => 2
[[[]],[]] => [1,1,0,0,1,0] => [[0,1,0],[1,0,0],[0,0,1]] => [2,1,3] => 2
[[[],[]]] => [1,1,0,1,0,0] => [[0,1,0],[1,-1,1],[0,1,0]] => [1,3,2] => 2
[[[[]]]] => [1,1,1,0,0,0] => [[0,0,1],[0,1,0],[1,0,0]] => [3,2,1] => 6
[[],[],[],[]] => [1,0,1,0,1,0,1,0] => [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]] => [1,2,3,4] => 1
[[],[],[[]]] => [1,0,1,0,1,1,0,0] => [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]] => [1,2,4,3] => 2
[[],[[]],[]] => [1,0,1,1,0,0,1,0] => [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]] => [1,3,2,4] => 2
[[],[[],[]]] => [1,0,1,1,0,1,0,0] => [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]] => [1,2,4,3] => 2
[[],[[[]]]] => [1,0,1,1,1,0,0,0] => [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]] => [1,4,3,2] => 6
[[[]],[],[]] => [1,1,0,0,1,0,1,0] => [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]] => [2,1,3,4] => 2
[[[]],[[]]] => [1,1,0,0,1,1,0,0] => [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]] => [2,1,4,3] => 4
[[[],[]],[]] => [1,1,0,1,0,0,1,0] => [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]] => [1,3,2,4] => 2
[[[[]]],[]] => [1,1,1,0,0,0,1,0] => [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]] => [3,2,1,4] => 6
[[[],[],[]]] => [1,1,0,1,0,1,0,0] => [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]] => [1,2,4,3] => 2
[[[],[[]]]] => [1,1,0,1,1,0,0,0] => [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]] => [1,4,3,2] => 6
[[[[]],[]]] => [1,1,1,0,0,1,0,0] => [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]] => [2,1,4,3] => 4
[[[[],[]]]] => [1,1,1,0,1,0,0,0] => [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]] => [1,4,3,2] => 6
[[[[[]]]]] => [1,1,1,1,0,0,0,0] => [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]] => [4,3,2,1] => 24
[[],[],[],[],[]] => [1,0,1,0,1,0,1,0,1,0] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]] => [1,2,3,4,5] => 1
[[],[],[],[[]]] => [1,0,1,0,1,0,1,1,0,0] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]] => [1,2,3,5,4] => 2
[[],[],[[]],[]] => [1,0,1,0,1,1,0,0,1,0] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]] => [1,2,4,3,5] => 2
[[],[],[[],[]]] => [1,0,1,0,1,1,0,1,0,0] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]] => [1,2,3,5,4] => 2
[[],[],[[[]]]] => [1,0,1,0,1,1,1,0,0,0] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]] => [1,2,5,4,3] => 6
[[],[[]],[],[]] => [1,0,1,1,0,0,1,0,1,0] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]] => [1,3,2,4,5] => 2
[[],[[]],[[]]] => [1,0,1,1,0,0,1,1,0,0] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]] => [1,3,2,5,4] => 4
[[],[[],[]],[]] => [1,0,1,1,0,1,0,0,1,0] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]] => [1,2,4,3,5] => 2
[[],[[[]]],[]] => [1,0,1,1,1,0,0,0,1,0] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]] => [1,4,3,2,5] => 6
[[],[[],[],[]]] => [1,0,1,1,0,1,0,1,0,0] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]] => [1,2,3,5,4] => 2
[[],[[],[[]]]] => [1,0,1,1,0,1,1,0,0,0] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]] => [1,2,5,4,3] => 6
[[],[[[]],[]]] => [1,0,1,1,1,0,0,1,0,0] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]] => [1,3,2,5,4] => 4
[[],[[[],[]]]] => [1,0,1,1,1,0,1,0,0,0] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]] => [1,2,5,4,3] => 6
[[],[[[[]]]]] => [1,0,1,1,1,1,0,0,0,0] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]] => [1,5,4,3,2] => 24
[[[]],[],[],[]] => [1,1,0,0,1,0,1,0,1,0] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]] => [2,1,3,4,5] => 2
[[[]],[],[[]]] => [1,1,0,0,1,0,1,1,0,0] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]] => [2,1,3,5,4] => 4
[[[]],[[]],[]] => [1,1,0,0,1,1,0,0,1,0] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]] => [2,1,4,3,5] => 4
[[[]],[[],[]]] => [1,1,0,0,1,1,0,1,0,0] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]] => [2,1,3,5,4] => 4
[[[]],[[[]]]] => [1,1,0,0,1,1,1,0,0,0] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]] => [2,1,5,4,3] => 12
[[[],[]],[],[]] => [1,1,0,1,0,0,1,0,1,0] => [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]] => [1,3,2,4,5] => 2
[[[[]]],[],[]] => [1,1,1,0,0,0,1,0,1,0] => [[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]] => [3,2,1,4,5] => 6
[[[],[]],[[]]] => [1,1,0,1,0,0,1,1,0,0] => [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]] => [1,3,2,5,4] => 4
[[[[]]],[[]]] => [1,1,1,0,0,0,1,1,0,0] => [[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0]] => [3,2,1,5,4] => 12
[[[],[],[]],[]] => [1,1,0,1,0,1,0,0,1,0] => [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]] => [1,2,4,3,5] => 2
[[[],[[]]],[]] => [1,1,0,1,1,0,0,0,1,0] => [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]] => [1,4,3,2,5] => 6
[[[[]],[]],[]] => [1,1,1,0,0,1,0,0,1,0] => [[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]] => [2,1,4,3,5] => 4
[[[[],[]]],[]] => [1,1,1,0,1,0,0,0,1,0] => [[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]] => [1,4,3,2,5] => 6
[[[[[]]]],[]] => [1,1,1,1,0,0,0,0,1,0] => [[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1]] => [4,3,2,1,5] => 24
[[[],[],[],[]]] => [1,1,0,1,0,1,0,1,0,0] => [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]] => [1,2,3,5,4] => 2
[[[],[],[[]]]] => [1,1,0,1,0,1,1,0,0,0] => [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]] => [1,2,5,4,3] => 6
[[[],[[]],[]]] => [1,1,0,1,1,0,0,1,0,0] => [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]] => [1,3,2,5,4] => 4
[[[],[[],[]]]] => [1,1,0,1,1,0,1,0,0,0] => [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]] => [1,2,5,4,3] => 6
[[[],[[[]]]]] => [1,1,0,1,1,1,0,0,0,0] => [[0,1,0,0,0],[1,-1,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]] => [1,5,4,3,2] => 24
[[[[]],[],[]]] => [1,1,1,0,0,1,0,1,0,0] => [[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]] => [2,1,3,5,4] => 4
[[[[]],[[]]]] => [1,1,1,0,0,1,1,0,0,0] => [[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]] => [2,1,5,4,3] => 12
[[[[],[]],[]]] => [1,1,1,0,1,0,0,1,0,0] => [[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]] => [1,3,2,5,4] => 4
[[[[[]]],[]]] => [1,1,1,1,0,0,0,1,0,0] => [[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,-1,1],[0,0,0,1,0]] => [3,2,1,5,4] => 12
[[[[],[],[]]]] => [1,1,1,0,1,0,1,0,0,0] => [[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]] => [1,2,5,4,3] => 6
[[[[],[[]]]]] => [1,1,1,0,1,1,0,0,0,0] => [[0,0,1,0,0],[0,1,-1,0,1],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0]] => [1,5,4,3,2] => 24
[[[[[]],[]]]] => [1,1,1,1,0,0,1,0,0,0] => [[0,0,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[1,0,-1,1,0],[0,0,1,0,0]] => [2,1,5,4,3] => 12
[[[[[],[]]]]] => [1,1,1,1,0,1,0,0,0,0] => [[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0]] => [1,5,4,3,2] => 24
[[[[[[]]]]]] => [1,1,1,1,1,0,0,0,0,0] => [[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0]] => [5,4,3,2,1] => 120
[[],[],[],[],[],[]] => [1,0,1,0,1,0,1,0,1,0,1,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]] => [1,2,3,4,5,6] => 1
[[],[],[],[],[[]]] => [1,0,1,0,1,0,1,0,1,1,0,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]] => [1,2,3,4,6,5] => 2
[[],[],[],[[]],[]] => [1,0,1,0,1,0,1,1,0,0,1,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]] => [1,2,3,5,4,6] => 2
[[],[],[],[[],[]]] => [1,0,1,0,1,0,1,1,0,1,0,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => [1,2,3,4,6,5] => 2
[[],[],[],[[[]]]] => [1,0,1,0,1,0,1,1,1,0,0,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]] => [1,2,3,6,5,4] => 6
[[],[],[[]],[],[]] => [1,0,1,0,1,1,0,0,1,0,1,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]] => [1,2,4,3,5,6] => 2
[[],[],[[]],[[]]] => [1,0,1,0,1,1,0,0,1,1,0,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]] => [1,2,4,3,6,5] => 4
[[],[],[[],[]],[]] => [1,0,1,0,1,1,0,1,0,0,1,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]] => [1,2,3,5,4,6] => 2
[[],[],[[[]]],[]] => [1,0,1,0,1,1,1,0,0,0,1,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1]] => [1,2,5,4,3,6] => 6
[[],[],[[],[],[]]] => [1,0,1,0,1,1,0,1,0,1,0,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => [1,2,3,4,6,5] => 2
[[],[],[[],[[]]]] => [1,0,1,0,1,1,0,1,1,0,0,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]] => [1,2,3,6,5,4] => 6
[[],[],[[[]],[]]] => [1,0,1,0,1,1,1,0,0,1,0,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]] => [1,2,4,3,6,5] => 4
[[],[],[[[],[]]]] => [1,0,1,0,1,1,1,0,1,0,0,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,-1,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]] => [1,2,3,6,5,4] => 6
[[],[],[[[[]]]]] => [1,0,1,0,1,1,1,1,0,0,0,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0]] => [1,2,6,5,4,3] => 24
[[],[[]],[],[],[]] => [1,0,1,1,0,0,1,0,1,0,1,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]] => [1,3,2,4,5,6] => 2
[[],[[]],[],[[]]] => [1,0,1,1,0,0,1,0,1,1,0,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]] => [1,3,2,4,6,5] => 4
[[],[[]],[[]],[]] => [1,0,1,1,0,0,1,1,0,0,1,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]] => [1,3,2,5,4,6] => 4
[[],[[]],[[],[]]] => [1,0,1,1,0,0,1,1,0,1,0,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => [1,3,2,4,6,5] => 4
[[],[[]],[[[]]]] => [1,0,1,1,0,0,1,1,1,0,0,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]] => [1,3,2,6,5,4] => 12
[[],[[],[]],[],[]] => [1,0,1,1,0,1,0,0,1,0,1,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]] => [1,2,4,3,5,6] => 2
[[],[[[]]],[],[]] => [1,0,1,1,1,0,0,0,1,0,1,0] => [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]] => [1,4,3,2,5,6] => 6
[[],[[],[]],[[]]] => [1,0,1,1,0,1,0,0,1,1,0,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]] => [1,2,4,3,6,5] => 4
[[],[[[]]],[[]]] => [1,0,1,1,1,0,0,0,1,1,0,0] => [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]] => [1,4,3,2,6,5] => 12
[[],[[],[],[]],[]] => [1,0,1,1,0,1,0,1,0,0,1,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]] => [1,2,3,5,4,6] => 2
[[],[[],[[]]],[]] => [1,0,1,1,0,1,1,0,0,0,1,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1]] => [1,2,5,4,3,6] => 6
[[],[[[]],[]],[]] => [1,0,1,1,1,0,0,1,0,0,1,0] => [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]] => [1,3,2,5,4,6] => 4
[[],[[[],[]]],[]] => [1,0,1,1,1,0,1,0,0,0,1,0] => [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1]] => [1,2,5,4,3,6] => 6
[[],[[[[]]]],[]] => [1,0,1,1,1,1,0,0,0,0,1,0] => [[1,0,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1]] => [1,5,4,3,2,6] => 24
[[],[[],[],[],[]]] => [1,0,1,1,0,1,0,1,0,1,0,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => [1,2,3,4,6,5] => 2
[[],[[],[],[[]]]] => [1,0,1,1,0,1,0,1,1,0,0,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]] => [1,2,3,6,5,4] => 6
[[],[[],[[]],[]]] => [1,0,1,1,0,1,1,0,0,1,0,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,0,1,0],[0,0,0,1,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]] => [1,2,4,3,6,5] => 4
[[],[[],[[],[]]]] => [1,0,1,1,0,1,1,0,1,0,0,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,0,1,0],[0,0,0,1,-1,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]] => [1,2,3,6,5,4] => 6
[[],[[],[[[]]]]] => [1,0,1,1,0,1,1,1,0,0,0,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0]] => [1,2,6,5,4,3] => 24
[[],[[[]],[],[]]] => [1,0,1,1,1,0,0,1,0,1,0,0] => [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => [1,3,2,4,6,5] => 4
[[],[[[]],[[]]]] => [1,0,1,1,1,0,0,1,1,0,0,0] => [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]] => [1,3,2,6,5,4] => 12
[[],[[[],[]],[]]] => [1,0,1,1,1,0,1,0,0,1,0,0] => [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,1,-1,1,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]] => [1,2,4,3,6,5] => 4
[[],[[[[]]],[]]] => [1,0,1,1,1,1,0,0,0,1,0,0] => [[1,0,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,-1,1],[0,0,0,0,1,0]] => [1,4,3,2,6,5] => 12
>>> Load all 258 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of permutations less than or equal to a permutation in left weak order.
This is the same as the number of permutations less than or equal to the given permutation in right weak order.
This is the same as the number of permutations less than or equal to the given permutation in right weak order.
Map
to left key permutation
Description
Return the permutation of the left key of an alternating sign matrix.
This was originally defined by Lascoux and then further studied by Aval [1].
This was originally defined by Lascoux and then further studied by Aval [1].
Map
to Dyck path
Description
Return the Dyck path of the corresponding ordered tree induced by the recurrence of the Catalan numbers, see wikipedia:Catalan_number.
This sends the maximal height of the Dyck path to the depth of the tree.
This sends the maximal height of the Dyck path to the depth of the tree.
Map
to symmetric ASM
Description
The diagonally symmetric alternating sign matrix corresponding to a Dyck path.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!