Identifier
-
Mp00258:
Set partitions
—Standard tableau associated to a set partition⟶
Standard tableaux
Mp00082: Standard tableaux —to Gelfand-Tsetlin pattern⟶ Gelfand-Tsetlin patterns
St000114: Gelfand-Tsetlin patterns ⟶ ℤ
Values
{{1}} => [[1]] => [[1]] => 1
{{1,2}} => [[1,2]] => [[2,0],[1]] => 3
{{1},{2}} => [[1],[2]] => [[1,1],[1]] => 3
{{1,2,3}} => [[1,2,3]] => [[3,0,0],[2,0],[1]] => 6
{{1,2},{3}} => [[1,2],[3]] => [[2,1,0],[2,0],[1]] => 6
{{1,3},{2}} => [[1,3],[2]] => [[2,1,0],[1,1],[1]] => 6
{{1},{2,3}} => [[1,3],[2]] => [[2,1,0],[1,1],[1]] => 6
{{1},{2},{3}} => [[1],[2],[3]] => [[1,1,1],[1,1],[1]] => 6
{{1,2,3,4}} => [[1,2,3,4]] => [[4,0,0,0],[3,0,0],[2,0],[1]] => 10
{{1,2,3},{4}} => [[1,2,3],[4]] => [[3,1,0,0],[3,0,0],[2,0],[1]] => 10
{{1,2,4},{3}} => [[1,2,4],[3]] => [[3,1,0,0],[2,1,0],[2,0],[1]] => 10
{{1,2},{3,4}} => [[1,2],[3,4]] => [[2,2,0,0],[2,1,0],[2,0],[1]] => 10
{{1,2},{3},{4}} => [[1,2],[3],[4]] => [[2,1,1,0],[2,1,0],[2,0],[1]] => 10
{{1,3,4},{2}} => [[1,3,4],[2]] => [[3,1,0,0],[2,1,0],[1,1],[1]] => 10
{{1,3},{2,4}} => [[1,3],[2,4]] => [[2,2,0,0],[2,1,0],[1,1],[1]] => 10
{{1,3},{2},{4}} => [[1,3],[2],[4]] => [[2,1,1,0],[2,1,0],[1,1],[1]] => 10
{{1,4},{2,3}} => [[1,3],[2,4]] => [[2,2,0,0],[2,1,0],[1,1],[1]] => 10
{{1},{2,3,4}} => [[1,3,4],[2]] => [[3,1,0,0],[2,1,0],[1,1],[1]] => 10
{{1},{2,3},{4}} => [[1,3],[2],[4]] => [[2,1,1,0],[2,1,0],[1,1],[1]] => 10
{{1,4},{2},{3}} => [[1,4],[2],[3]] => [[2,1,1,0],[1,1,1],[1,1],[1]] => 10
{{1},{2,4},{3}} => [[1,4],[2],[3]] => [[2,1,1,0],[1,1,1],[1,1],[1]] => 10
{{1},{2},{3,4}} => [[1,4],[2],[3]] => [[2,1,1,0],[1,1,1],[1,1],[1]] => 10
{{1},{2},{3},{4}} => [[1],[2],[3],[4]] => [[1,1,1,1],[1,1,1],[1,1],[1]] => 10
{{1,2,3,4,5}} => [[1,2,3,4,5]] => [[5,0,0,0,0],[4,0,0,0],[3,0,0],[2,0],[1]] => 15
{{1,2,3,4},{5}} => [[1,2,3,4],[5]] => [[4,1,0,0,0],[4,0,0,0],[3,0,0],[2,0],[1]] => 15
{{1,2,3,5},{4}} => [[1,2,3,5],[4]] => [[4,1,0,0,0],[3,1,0,0],[3,0,0],[2,0],[1]] => 15
{{1,2,3},{4,5}} => [[1,2,3],[4,5]] => [[3,2,0,0,0],[3,1,0,0],[3,0,0],[2,0],[1]] => 15
{{1,2,3},{4},{5}} => [[1,2,3],[4],[5]] => [[3,1,1,0,0],[3,1,0,0],[3,0,0],[2,0],[1]] => 15
{{1,2,4,5},{3}} => [[1,2,4,5],[3]] => [[4,1,0,0,0],[3,1,0,0],[2,1,0],[2,0],[1]] => 15
{{1,2,4},{3,5}} => [[1,2,4],[3,5]] => [[3,2,0,0,0],[3,1,0,0],[2,1,0],[2,0],[1]] => 15
{{1,2,4},{3},{5}} => [[1,2,4],[3],[5]] => [[3,1,1,0,0],[3,1,0,0],[2,1,0],[2,0],[1]] => 15
{{1,2,5},{3,4}} => [[1,2,5],[3,4]] => [[3,2,0,0,0],[2,2,0,0],[2,1,0],[2,0],[1]] => 15
{{1,2},{3,4,5}} => [[1,2,5],[3,4]] => [[3,2,0,0,0],[2,2,0,0],[2,1,0],[2,0],[1]] => 15
{{1,2},{3,4},{5}} => [[1,2],[3,4],[5]] => [[2,2,1,0,0],[2,2,0,0],[2,1,0],[2,0],[1]] => 15
{{1,2,5},{3},{4}} => [[1,2,5],[3],[4]] => [[3,1,1,0,0],[2,1,1,0],[2,1,0],[2,0],[1]] => 15
{{1,2},{3,5},{4}} => [[1,2],[3,5],[4]] => [[2,2,1,0,0],[2,1,1,0],[2,1,0],[2,0],[1]] => 15
{{1,2},{3},{4,5}} => [[1,2],[3,5],[4]] => [[2,2,1,0,0],[2,1,1,0],[2,1,0],[2,0],[1]] => 15
{{1,2},{3},{4},{5}} => [[1,2],[3],[4],[5]] => [[2,1,1,1,0],[2,1,1,0],[2,1,0],[2,0],[1]] => 15
{{1,3,4,5},{2}} => [[1,3,4,5],[2]] => [[4,1,0,0,0],[3,1,0,0],[2,1,0],[1,1],[1]] => 15
{{1,3,4},{2,5}} => [[1,3,4],[2,5]] => [[3,2,0,0,0],[3,1,0,0],[2,1,0],[1,1],[1]] => 15
{{1,3,4},{2},{5}} => [[1,3,4],[2],[5]] => [[3,1,1,0,0],[3,1,0,0],[2,1,0],[1,1],[1]] => 15
{{1,3,5},{2,4}} => [[1,3,5],[2,4]] => [[3,2,0,0,0],[2,2,0,0],[2,1,0],[1,1],[1]] => 15
{{1,3},{2,4,5}} => [[1,3,5],[2,4]] => [[3,2,0,0,0],[2,2,0,0],[2,1,0],[1,1],[1]] => 15
{{1,3},{2,4},{5}} => [[1,3],[2,4],[5]] => [[2,2,1,0,0],[2,2,0,0],[2,1,0],[1,1],[1]] => 15
{{1,3,5},{2},{4}} => [[1,3,5],[2],[4]] => [[3,1,1,0,0],[2,1,1,0],[2,1,0],[1,1],[1]] => 15
{{1,3},{2,5},{4}} => [[1,3],[2,5],[4]] => [[2,2,1,0,0],[2,1,1,0],[2,1,0],[1,1],[1]] => 15
{{1,3},{2},{4,5}} => [[1,3],[2,5],[4]] => [[2,2,1,0,0],[2,1,1,0],[2,1,0],[1,1],[1]] => 15
{{1,3},{2},{4},{5}} => [[1,3],[2],[4],[5]] => [[2,1,1,1,0],[2,1,1,0],[2,1,0],[1,1],[1]] => 15
{{1,4,5},{2,3}} => [[1,3,5],[2,4]] => [[3,2,0,0,0],[2,2,0,0],[2,1,0],[1,1],[1]] => 15
{{1,4},{2,3,5}} => [[1,3,5],[2,4]] => [[3,2,0,0,0],[2,2,0,0],[2,1,0],[1,1],[1]] => 15
{{1,4},{2,3},{5}} => [[1,3],[2,4],[5]] => [[2,2,1,0,0],[2,2,0,0],[2,1,0],[1,1],[1]] => 15
{{1,5},{2,3,4}} => [[1,3,4],[2,5]] => [[3,2,0,0,0],[3,1,0,0],[2,1,0],[1,1],[1]] => 15
{{1},{2,3,4,5}} => [[1,3,4,5],[2]] => [[4,1,0,0,0],[3,1,0,0],[2,1,0],[1,1],[1]] => 15
{{1},{2,3,4},{5}} => [[1,3,4],[2],[5]] => [[3,1,1,0,0],[3,1,0,0],[2,1,0],[1,1],[1]] => 15
{{1,5},{2,3},{4}} => [[1,3],[2,5],[4]] => [[2,2,1,0,0],[2,1,1,0],[2,1,0],[1,1],[1]] => 15
{{1},{2,3,5},{4}} => [[1,3,5],[2],[4]] => [[3,1,1,0,0],[2,1,1,0],[2,1,0],[1,1],[1]] => 15
{{1},{2,3},{4,5}} => [[1,3],[2,5],[4]] => [[2,2,1,0,0],[2,1,1,0],[2,1,0],[1,1],[1]] => 15
{{1},{2,3},{4},{5}} => [[1,3],[2],[4],[5]] => [[2,1,1,1,0],[2,1,1,0],[2,1,0],[1,1],[1]] => 15
{{1,4,5},{2},{3}} => [[1,4,5],[2],[3]] => [[3,1,1,0,0],[2,1,1,0],[1,1,1],[1,1],[1]] => 15
{{1,4},{2,5},{3}} => [[1,4],[2,5],[3]] => [[2,2,1,0,0],[2,1,1,0],[1,1,1],[1,1],[1]] => 15
{{1,4},{2},{3,5}} => [[1,4],[2,5],[3]] => [[2,2,1,0,0],[2,1,1,0],[1,1,1],[1,1],[1]] => 15
{{1,4},{2},{3},{5}} => [[1,4],[2],[3],[5]] => [[2,1,1,1,0],[2,1,1,0],[1,1,1],[1,1],[1]] => 15
{{1,5},{2,4},{3}} => [[1,4],[2,5],[3]] => [[2,2,1,0,0],[2,1,1,0],[1,1,1],[1,1],[1]] => 15
{{1},{2,4,5},{3}} => [[1,4,5],[2],[3]] => [[3,1,1,0,0],[2,1,1,0],[1,1,1],[1,1],[1]] => 15
{{1},{2,4},{3,5}} => [[1,4],[2,5],[3]] => [[2,2,1,0,0],[2,1,1,0],[1,1,1],[1,1],[1]] => 15
{{1},{2,4},{3},{5}} => [[1,4],[2],[3],[5]] => [[2,1,1,1,0],[2,1,1,0],[1,1,1],[1,1],[1]] => 15
{{1,5},{2},{3,4}} => [[1,4],[2,5],[3]] => [[2,2,1,0,0],[2,1,1,0],[1,1,1],[1,1],[1]] => 15
{{1},{2,5},{3,4}} => [[1,4],[2,5],[3]] => [[2,2,1,0,0],[2,1,1,0],[1,1,1],[1,1],[1]] => 15
{{1},{2},{3,4,5}} => [[1,4,5],[2],[3]] => [[3,1,1,0,0],[2,1,1,0],[1,1,1],[1,1],[1]] => 15
{{1},{2},{3,4},{5}} => [[1,4],[2],[3],[5]] => [[2,1,1,1,0],[2,1,1,0],[1,1,1],[1,1],[1]] => 15
{{1,5},{2},{3},{4}} => [[1,5],[2],[3],[4]] => [[2,1,1,1,0],[1,1,1,1],[1,1,1],[1,1],[1]] => 15
{{1},{2,5},{3},{4}} => [[1,5],[2],[3],[4]] => [[2,1,1,1,0],[1,1,1,1],[1,1,1],[1,1],[1]] => 15
{{1},{2},{3,5},{4}} => [[1,5],[2],[3],[4]] => [[2,1,1,1,0],[1,1,1,1],[1,1,1],[1,1],[1]] => 15
{{1},{2},{3},{4,5}} => [[1,5],[2],[3],[4]] => [[2,1,1,1,0],[1,1,1,1],[1,1,1],[1,1],[1]] => 15
{{1},{2},{3},{4},{5}} => [[1],[2],[3],[4],[5]] => [[1,1,1,1,1],[1,1,1,1],[1,1,1],[1,1],[1]] => 15
{{1,2,3,4,5,6}} => [[1,2,3,4,5,6]] => [[6,0,0,0,0,0],[5,0,0,0,0],[4,0,0,0],[3,0,0],[2,0],[1]] => 21
{{1,2,3,4,5},{6}} => [[1,2,3,4,5],[6]] => [[5,1,0,0,0,0],[5,0,0,0,0],[4,0,0,0],[3,0,0],[2,0],[1]] => 21
{{1,2,3,4,6},{5}} => [[1,2,3,4,6],[5]] => [[5,1,0,0,0,0],[4,1,0,0,0],[4,0,0,0],[3,0,0],[2,0],[1]] => 21
{{1,2,3,4},{5,6}} => [[1,2,3,4],[5,6]] => [[4,2,0,0,0,0],[4,1,0,0,0],[4,0,0,0],[3,0,0],[2,0],[1]] => 21
{{1,2,3,4},{5},{6}} => [[1,2,3,4],[5],[6]] => [[4,1,1,0,0,0],[4,1,0,0,0],[4,0,0,0],[3,0,0],[2,0],[1]] => 21
{{1,2,3,5,6},{4}} => [[1,2,3,5,6],[4]] => [[5,1,0,0,0,0],[4,1,0,0,0],[3,1,0,0],[3,0,0],[2,0],[1]] => 21
{{1,2,3,5},{4,6}} => [[1,2,3,5],[4,6]] => [[4,2,0,0,0,0],[4,1,0,0,0],[3,1,0,0],[3,0,0],[2,0],[1]] => 21
{{1,2,3,5},{4},{6}} => [[1,2,3,5],[4],[6]] => [[4,1,1,0,0,0],[4,1,0,0,0],[3,1,0,0],[3,0,0],[2,0],[1]] => 21
{{1,2,3,6},{4,5}} => [[1,2,3,6],[4,5]] => [[4,2,0,0,0,0],[3,2,0,0,0],[3,1,0,0],[3,0,0],[2,0],[1]] => 21
{{1,2,3},{4,5,6}} => [[1,2,3],[4,5,6]] => [[3,3,0,0,0,0],[3,2,0,0,0],[3,1,0,0],[3,0,0],[2,0],[1]] => 21
{{1,2,3},{4,5},{6}} => [[1,2,3],[4,5],[6]] => [[3,2,1,0,0,0],[3,2,0,0,0],[3,1,0,0],[3,0,0],[2,0],[1]] => 21
{{1,2,3,6},{4},{5}} => [[1,2,3,6],[4],[5]] => [[4,1,1,0,0,0],[3,1,1,0,0],[3,1,0,0],[3,0,0],[2,0],[1]] => 21
{{1,2,3},{4,6},{5}} => [[1,2,3],[4,6],[5]] => [[3,2,1,0,0,0],[3,1,1,0,0],[3,1,0,0],[3,0,0],[2,0],[1]] => 21
{{1,2,3},{4},{5,6}} => [[1,2,3],[4,6],[5]] => [[3,2,1,0,0,0],[3,1,1,0,0],[3,1,0,0],[3,0,0],[2,0],[1]] => 21
{{1,2,3},{4},{5},{6}} => [[1,2,3],[4],[5],[6]] => [[3,1,1,1,0,0],[3,1,1,0,0],[3,1,0,0],[3,0,0],[2,0],[1]] => 21
{{1,2,4,5,6},{3}} => [[1,2,4,5,6],[3]] => [[5,1,0,0,0,0],[4,1,0,0,0],[3,1,0,0],[2,1,0],[2,0],[1]] => 21
{{1,2,4,5},{3,6}} => [[1,2,4,5],[3,6]] => [[4,2,0,0,0,0],[4,1,0,0,0],[3,1,0,0],[2,1,0],[2,0],[1]] => 21
{{1,2,4,5},{3},{6}} => [[1,2,4,5],[3],[6]] => [[4,1,1,0,0,0],[4,1,0,0,0],[3,1,0,0],[2,1,0],[2,0],[1]] => 21
{{1,2,4,6},{3,5}} => [[1,2,4,6],[3,5]] => [[4,2,0,0,0,0],[3,2,0,0,0],[3,1,0,0],[2,1,0],[2,0],[1]] => 21
{{1,2,4},{3,5,6}} => [[1,2,4],[3,5,6]] => [[3,3,0,0,0,0],[3,2,0,0,0],[3,1,0,0],[2,1,0],[2,0],[1]] => 21
{{1,2,4},{3,5},{6}} => [[1,2,4],[3,5],[6]] => [[3,2,1,0,0,0],[3,2,0,0,0],[3,1,0,0],[2,1,0],[2,0],[1]] => 21
{{1,2,4,6},{3},{5}} => [[1,2,4,6],[3],[5]] => [[4,1,1,0,0,0],[3,1,1,0,0],[3,1,0,0],[2,1,0],[2,0],[1]] => 21
{{1,2,4},{3,6},{5}} => [[1,2,4],[3,6],[5]] => [[3,2,1,0,0,0],[3,1,1,0,0],[3,1,0,0],[2,1,0],[2,0],[1]] => 21
{{1,2,4},{3},{5,6}} => [[1,2,4],[3,6],[5]] => [[3,2,1,0,0,0],[3,1,1,0,0],[3,1,0,0],[2,1,0],[2,0],[1]] => 21
{{1,2,4},{3},{5},{6}} => [[1,2,4],[3],[5],[6]] => [[3,1,1,1,0,0],[3,1,1,0,0],[3,1,0,0],[2,1,0],[2,0],[1]] => 21
{{1,2,5,6},{3,4}} => [[1,2,5,6],[3,4]] => [[4,2,0,0,0,0],[3,2,0,0,0],[2,2,0,0],[2,1,0],[2,0],[1]] => 21
>>> Load all 384 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The sum of the entries of the Gelfand-Tsetlin pattern.
Map
Standard tableau associated to a set partition
Description
Sends a set partition to the associated standard tableau.
The $j$th column of the standard tableau associated to a set partition is the set of $j$th smallest elements of its blocks arranged in increassing order.
The $j$th column of the standard tableau associated to a set partition is the set of $j$th smallest elements of its blocks arranged in increassing order.
Map
to Gelfand-Tsetlin pattern
Description
Sends a tableau to its corresponding Gelfand-Tsetlin pattern.
To obtain this Gelfand-Tsetlin pattern, fill in the first row of the pattern with the shape of the tableau.
Then remove the maximal entry from the tableau to obtain a smaller tableau, and repeat the process until the tableau is empty.
To obtain this Gelfand-Tsetlin pattern, fill in the first row of the pattern with the shape of the tableau.
Then remove the maximal entry from the tableau to obtain a smaller tableau, and repeat the process until the tableau is empty.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!