Identifier
-
Mp00327:
Dyck paths
—inverse Kreweras complement⟶
Dyck paths
St000120: Dyck paths ⟶ ℤ
Values
[1,0] => [1,0] => 0
[1,0,1,0] => [1,1,0,0] => 0
[1,1,0,0] => [1,0,1,0] => 1
[1,0,1,0,1,0] => [1,1,1,0,0,0] => 0
[1,0,1,1,0,0] => [1,1,0,1,0,0] => 1
[1,1,0,0,1,0] => [1,0,1,1,0,0] => 1
[1,1,0,1,0,0] => [1,1,0,0,1,0] => 2
[1,1,1,0,0,0] => [1,0,1,0,1,0] => 1
[1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => 0
[1,0,1,0,1,1,0,0] => [1,1,1,0,1,0,0,0] => 1
[1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,0] => 1
[1,0,1,1,0,1,0,0] => [1,1,1,0,0,1,0,0] => 2
[1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,0] => 1
[1,1,0,0,1,0,1,0] => [1,0,1,1,1,0,0,0] => 1
[1,1,0,0,1,1,0,0] => [1,0,1,1,0,1,0,0] => 1
[1,1,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => 2
[1,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,0] => 3
[1,1,0,1,1,0,0,0] => [1,1,0,0,1,0,1,0] => 2
[1,1,1,0,0,0,1,0] => [1,0,1,0,1,1,0,0] => 2
[1,1,1,0,0,1,0,0] => [1,1,0,1,0,0,1,0] => 2
[1,1,1,0,1,0,0,0] => [1,0,1,1,0,0,1,0] => 1
[1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => 2
[1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => 0
[1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,0,1,0,0,0,0] => 1
[1,0,1,0,1,1,0,0,1,0] => [1,1,1,0,1,1,0,0,0,0] => 1
[1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => 2
[1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,0,0] => 1
[1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,1,1,0,0,0,0] => 1
[1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => 1
[1,0,1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,0] => 2
[1,0,1,1,0,1,0,1,0,0] => [1,1,1,1,0,0,0,1,0,0] => 3
[1,0,1,1,0,1,1,0,0,0] => [1,1,1,0,0,1,0,1,0,0] => 2
[1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,0,1,1,0,0,0] => 2
[1,0,1,1,1,0,0,1,0,0] => [1,1,1,0,1,0,0,1,0,0] => 2
[1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,1,0,0,1,0,0] => 1
[1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0] => 2
[1,1,0,0,1,0,1,0,1,0] => [1,0,1,1,1,1,0,0,0,0] => 1
[1,1,0,0,1,0,1,1,0,0] => [1,0,1,1,1,0,1,0,0,0] => 1
[1,1,0,0,1,1,0,0,1,0] => [1,0,1,1,0,1,1,0,0,0] => 2
[1,1,0,0,1,1,0,1,0,0] => [1,0,1,1,1,0,0,1,0,0] => 1
[1,1,0,0,1,1,1,0,0,0] => [1,0,1,1,0,1,0,1,0,0] => 2
[1,1,0,1,0,0,1,0,1,0] => [1,1,0,0,1,1,1,0,0,0] => 2
[1,1,0,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => 2
[1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,0,0,1,1,0,0] => 3
[1,1,0,1,0,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => 4
[1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,0,0,1,0,1,0] => 3
[1,1,0,1,1,0,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0] => 2
[1,1,0,1,1,0,0,1,0,0] => [1,1,1,0,1,0,0,0,1,0] => 3
[1,1,0,1,1,0,1,0,0,0] => [1,1,0,0,1,1,0,0,1,0] => 2
[1,1,0,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => 2
[1,1,1,0,0,0,1,0,1,0] => [1,0,1,0,1,1,1,0,0,0] => 2
[1,1,1,0,0,0,1,1,0,0] => [1,0,1,0,1,1,0,1,0,0] => 2
[1,1,1,0,0,1,0,0,1,0] => [1,1,0,1,0,0,1,1,0,0] => 3
[1,1,1,0,0,1,0,1,0,0] => [1,1,0,1,1,0,0,0,1,0] => 2
[1,1,1,0,0,1,1,0,0,0] => [1,1,0,1,0,0,1,0,1,0] => 3
[1,1,1,0,1,0,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0] => 3
[1,1,1,0,1,0,0,1,0,0] => [1,1,1,0,0,1,0,0,1,0] => 3
[1,1,1,0,1,0,1,0,0,0] => [1,0,1,1,1,0,0,0,1,0] => 1
[1,1,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0] => 3
[1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0] => 2
[1,1,1,1,0,0,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0] => 3
[1,1,1,1,0,0,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0] => 2
[1,1,1,1,0,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => 2
[1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => 2
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => 0
[1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => 1
[1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => 1
[1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => 2
[1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => 1
[1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => 1
[1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,1,0,1,1,0,1,0,0,0,0] => 1
[1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => 2
[1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[1,0,1,0,1,1,0,1,1,0,0,0] => [1,1,1,1,0,0,1,0,1,0,0,0] => 2
[1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => 2
[1,0,1,0,1,1,1,0,0,1,0,0] => [1,1,1,1,0,1,0,0,1,0,0,0] => 2
[1,0,1,0,1,1,1,0,1,0,0,0] => [1,1,1,0,1,1,0,0,1,0,0,0] => 1
[1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => 2
[1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => 1
[1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,0,1,1,1,0,1,0,0,0,0] => 1
[1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,0,1,1,0,1,1,0,0,0,0] => 2
[1,0,1,1,0,0,1,1,0,1,0,0] => [1,1,0,1,1,1,0,0,1,0,0,0] => 1
[1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => 2
[1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => 2
[1,0,1,1,0,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,1,0,0,0] => 2
[1,0,1,1,0,1,0,1,0,0,1,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => 3
[1,0,1,1,0,1,0,1,0,1,0,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => 4
[1,0,1,1,0,1,0,1,1,0,0,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => 3
[1,0,1,1,0,1,1,0,0,0,1,0] => [1,1,1,0,0,1,0,1,1,0,0,0] => 2
[1,0,1,1,0,1,1,0,0,1,0,0] => [1,1,1,1,0,1,0,0,0,1,0,0] => 3
[1,0,1,1,0,1,1,0,1,0,0,0] => [1,1,1,0,0,1,1,0,0,1,0,0] => 2
[1,0,1,1,0,1,1,1,0,0,0,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => 2
[1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => 2
[1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,0,1,1,0,1,0,0,0] => 2
[1,0,1,1,1,0,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,1,0,0,0] => 3
[1,0,1,1,1,0,0,1,0,1,0,0] => [1,1,1,0,1,1,0,0,0,1,0,0] => 2
[1,0,1,1,1,0,0,1,1,0,0,0] => [1,1,1,0,1,0,0,1,0,1,0,0] => 3
[1,0,1,1,1,0,1,0,0,0,1,0] => [1,1,0,1,1,0,0,1,1,0,0,0] => 3
[1,0,1,1,1,0,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,1,0,0] => 3
[1,0,1,1,1,0,1,0,1,0,0,0] => [1,1,0,1,1,1,0,0,0,1,0,0] => 1
[1,0,1,1,1,0,1,1,0,0,0,0] => [1,1,0,1,1,0,0,1,0,1,0,0] => 3
>>> Load all 196 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of left tunnels of a Dyck path.
A tunnel is a pair (a,b) where a is the position of an open parenthesis and b is the position of the matching close parenthesis. If a+b<n then the tunnel is called left.
A tunnel is a pair (a,b) where a is the position of an open parenthesis and b is the position of the matching close parenthesis. If a+b<n then the tunnel is called left.
Map
inverse Kreweras complement
Description
Return the inverse of the Kreweras complement of a Dyck path, regarded as a noncrossing set partition.
To identify Dyck paths and noncrossing set partitions, this maps uses the following classical bijection. The number of down steps after the $i$-th up step of the Dyck path is the size of the block of the set partition whose maximal element is $i$. If $i$ is not a maximal element of a block, the $(i+1)$-st step is also an up step.
To identify Dyck paths and noncrossing set partitions, this maps uses the following classical bijection. The number of down steps after the $i$-th up step of the Dyck path is the size of the block of the set partition whose maximal element is $i$. If $i$ is not a maximal element of a block, the $(i+1)$-st step is also an up step.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!