Identifier
-
Mp00199:
Dyck paths
—prime Dyck path⟶
Dyck paths
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00061: Permutations —to increasing tree⟶ Binary trees
St000121: Binary trees ⟶ ℤ
Values
[1,0] => [1,1,0,0] => [1,2] => [.,[.,.]] => 0
[1,0,1,0] => [1,1,0,1,0,0] => [2,1,3] => [[.,.],[.,.]] => 0
[1,1,0,0] => [1,1,1,0,0,0] => [1,2,3] => [.,[.,[.,.]]] => 0
[1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => [3,2,1,4] => [[[.,.],.],[.,.]] => 0
[1,0,1,1,0,0] => [1,1,0,1,1,0,0,0] => [2,3,1,4] => [[.,[.,.]],[.,.]] => 0
[1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [3,1,2,4] => [[.,.],[.,[.,.]]] => 0
[1,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => [2,1,3,4] => [[.,.],[.,[.,.]]] => 0
[1,1,1,0,0,0] => [1,1,1,1,0,0,0,0] => [1,2,3,4] => [.,[.,[.,[.,.]]]] => 1
[1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [4,3,2,1,5] => [[[[.,.],.],.],[.,.]] => 0
[1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => [3,4,2,1,5] => [[[.,[.,.]],.],[.,.]] => 0
[1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => [4,2,3,1,5] => [[[.,.],[.,.]],[.,.]] => 0
[1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => [3,2,4,1,5] => [[[.,.],[.,.]],[.,.]] => 0
[1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => [2,3,4,1,5] => [[.,[.,[.,.]]],[.,.]] => 0
[1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [4,3,1,2,5] => [[[.,.],.],[.,[.,.]]] => 0
[1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0] => [3,4,1,2,5] => [[.,[.,.]],[.,[.,.]]] => 0
[1,1,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => [4,2,1,3,5] => [[[.,.],.],[.,[.,.]]] => 0
[1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => [3,2,1,4,5] => [[[.,.],.],[.,[.,.]]] => 0
[1,1,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => [2,3,1,4,5] => [[.,[.,.]],[.,[.,.]]] => 0
[1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [4,1,2,3,5] => [[.,.],[.,[.,[.,.]]]] => 1
[1,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [3,1,2,4,5] => [[.,.],[.,[.,[.,.]]]] => 1
[1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [2,1,3,4,5] => [[.,.],[.,[.,[.,.]]]] => 1
[1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]] => 2
[1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => [5,4,3,2,1,6] => [[[[[.,.],.],.],.],[.,.]] => 0
[1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => [4,5,3,2,1,6] => [[[[.,[.,.]],.],.],[.,.]] => 0
[1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,0] => [5,3,4,2,1,6] => [[[[.,.],[.,.]],.],[.,.]] => 0
[1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,1,1,0,1,0,0,0] => [4,3,5,2,1,6] => [[[[.,.],[.,.]],.],[.,.]] => 0
[1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => [3,4,5,2,1,6] => [[[.,[.,[.,.]]],.],[.,.]] => 0
[1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,0] => [5,4,2,3,1,6] => [[[[.,.],.],[.,.]],[.,.]] => 0
[1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,1,1,0,0,0] => [4,5,2,3,1,6] => [[[.,[.,.]],[.,.]],[.,.]] => 0
[1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,1,0,0,1,0,0] => [5,3,2,4,1,6] => [[[[.,.],.],[.,.]],[.,.]] => 0
[1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => [4,3,2,5,1,6] => [[[[.,.],.],[.,.]],[.,.]] => 0
[1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,1,0,0,0,0] => [3,4,2,5,1,6] => [[[.,[.,.]],[.,.]],[.,.]] => 0
[1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,0] => [5,2,3,4,1,6] => [[[.,.],[.,[.,.]]],[.,.]] => 0
[1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,1,0,0,1,0,0,0] => [4,2,3,5,1,6] => [[[.,.],[.,[.,.]]],[.,.]] => 0
[1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,1,1,0,1,0,0,0,0] => [3,2,4,5,1,6] => [[[.,.],[.,[.,.]]],[.,.]] => 0
[1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [2,3,4,5,1,6] => [[.,[.,[.,[.,.]]]],[.,.]] => 1
[1,1,0,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => [5,4,3,1,2,6] => [[[[.,.],.],.],[.,[.,.]]] => 0
[1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,1,0,0,0] => [4,5,3,1,2,6] => [[[.,[.,.]],.],[.,[.,.]]] => 0
[1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,1,0,0] => [5,3,4,1,2,6] => [[[.,.],[.,.]],[.,[.,.]]] => 0
[1,1,0,0,1,1,0,1,0,0] => [1,1,1,0,0,1,1,0,1,0,0,0] => [4,3,5,1,2,6] => [[[.,.],[.,.]],[.,[.,.]]] => 0
[1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => [3,4,5,1,2,6] => [[.,[.,[.,.]]],[.,[.,.]]] => 0
[1,1,0,1,0,0,1,0,1,0] => [1,1,1,0,1,0,0,1,0,1,0,0] => [5,4,2,1,3,6] => [[[[.,.],.],.],[.,[.,.]]] => 0
[1,1,0,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,1,0,0,0] => [4,5,2,1,3,6] => [[[.,[.,.]],.],[.,[.,.]]] => 0
[1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => [5,3,2,1,4,6] => [[[[.,.],.],.],[.,[.,.]]] => 0
[1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [4,3,2,1,5,6] => [[[[.,.],.],.],[.,[.,.]]] => 0
[1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [3,4,2,1,5,6] => [[[.,[.,.]],.],[.,[.,.]]] => 0
[1,1,0,1,1,0,0,0,1,0] => [1,1,1,0,1,1,0,0,0,1,0,0] => [5,2,3,1,4,6] => [[[.,.],[.,.]],[.,[.,.]]] => 0
[1,1,0,1,1,0,0,1,0,0] => [1,1,1,0,1,1,0,0,1,0,0,0] => [4,2,3,1,5,6] => [[[.,.],[.,.]],[.,[.,.]]] => 0
[1,1,0,1,1,0,1,0,0,0] => [1,1,1,0,1,1,0,1,0,0,0,0] => [3,2,4,1,5,6] => [[[.,.],[.,.]],[.,[.,.]]] => 0
[1,1,0,1,1,1,0,0,0,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => [2,3,4,1,5,6] => [[.,[.,[.,.]]],[.,[.,.]]] => 0
[1,1,1,0,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => [5,4,1,2,3,6] => [[[.,.],.],[.,[.,[.,.]]]] => 1
[1,1,1,0,0,0,1,1,0,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => [4,5,1,2,3,6] => [[.,[.,.]],[.,[.,[.,.]]]] => 1
[1,1,1,0,0,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,1,0,0] => [5,3,1,2,4,6] => [[[.,.],.],[.,[.,[.,.]]]] => 1
[1,1,1,0,0,1,0,1,0,0] => [1,1,1,1,0,0,1,0,1,0,0,0] => [4,3,1,2,5,6] => [[[.,.],.],[.,[.,[.,.]]]] => 1
[1,1,1,0,0,1,1,0,0,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => [3,4,1,2,5,6] => [[.,[.,.]],[.,[.,[.,.]]]] => 1
[1,1,1,0,1,0,0,0,1,0] => [1,1,1,1,0,1,0,0,0,1,0,0] => [5,2,1,3,4,6] => [[[.,.],.],[.,[.,[.,.]]]] => 1
[1,1,1,0,1,0,0,1,0,0] => [1,1,1,1,0,1,0,0,1,0,0,0] => [4,2,1,3,5,6] => [[[.,.],.],[.,[.,[.,.]]]] => 1
[1,1,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => [3,2,1,4,5,6] => [[[.,.],.],[.,[.,[.,.]]]] => 1
[1,1,1,0,1,1,0,0,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => [2,3,1,4,5,6] => [[.,[.,.]],[.,[.,[.,.]]]] => 1
[1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => [5,1,2,3,4,6] => [[.,.],[.,[.,[.,[.,.]]]]] => 2
[1,1,1,1,0,0,0,1,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => [4,1,2,3,5,6] => [[.,.],[.,[.,[.,[.,.]]]]] => 2
[1,1,1,1,0,0,1,0,0,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => [3,1,2,4,5,6] => [[.,.],[.,[.,[.,[.,.]]]]] => 2
[1,1,1,1,0,1,0,0,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => [2,1,3,4,5,6] => [[.,.],[.,[.,[.,[.,.]]]]] => 2
[1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,2,3,4,5,6] => [.,[.,[.,[.,[.,[.,.]]]]]] => 3
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,0] => [6,5,4,3,2,1,7] => [[[[[[.,.],.],.],.],.],[.,.]] => 0
[1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,1,1,0,0,0] => [5,6,4,3,2,1,7] => [[[[[.,[.,.]],.],.],.],[.,.]] => 0
[1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,1,1,0,0,1,0,0] => [6,4,5,3,2,1,7] => [[[[[.,.],[.,.]],.],.],[.,.]] => 0
[1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,1,0,1,1,0,1,0,0,0] => [5,4,6,3,2,1,7] => [[[[[.,.],[.,.]],.],.],[.,.]] => 0
[1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,1,1,1,0,0,0,0] => [4,5,6,3,2,1,7] => [[[[.,[.,[.,.]]],.],.],[.,.]] => 0
[1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,1,0,0] => [6,5,3,4,2,1,7] => [[[[[.,.],.],[.,.]],.],[.,.]] => 0
[1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,1,1,0,0,0] => [5,6,3,4,2,1,7] => [[[[.,[.,.]],[.,.]],.],[.,.]] => 0
[1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,0,1,1,0,1,0,0,1,0,0] => [6,4,3,5,2,1,7] => [[[[[.,.],.],[.,.]],.],[.,.]] => 0
[1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,0,1,1,0,1,0,1,0,0,0] => [5,4,3,6,2,1,7] => [[[[[.,.],.],[.,.]],.],[.,.]] => 0
[1,0,1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,0,1,1,0,1,1,0,0,0,0] => [4,5,3,6,2,1,7] => [[[[.,[.,.]],[.,.]],.],[.,.]] => 0
[1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,0,1,1,1,0,0,0,1,0,0] => [6,3,4,5,2,1,7] => [[[[.,.],[.,[.,.]]],.],[.,.]] => 0
[1,0,1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,0,1,1,1,0,0,1,0,0,0] => [5,3,4,6,2,1,7] => [[[[.,.],[.,[.,.]]],.],[.,.]] => 0
[1,0,1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,0,1,1,1,0,1,0,0,0,0] => [4,3,5,6,2,1,7] => [[[[.,.],[.,[.,.]]],.],[.,.]] => 0
[1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,1,1,1,0,0,0,0,0] => [3,4,5,6,2,1,7] => [[[.,[.,[.,[.,.]]]],.],[.,.]] => 1
[1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,1,0,0] => [6,5,4,2,3,1,7] => [[[[[.,.],.],.],[.,.]],[.,.]] => 0
[1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,0,1,1,0,0,1,0,1,1,0,0,0] => [5,6,4,2,3,1,7] => [[[[.,[.,.]],.],[.,.]],[.,.]] => 0
[1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,1,0,0,1,0,0] => [6,4,5,2,3,1,7] => [[[[.,.],[.,.]],[.,.]],[.,.]] => 0
[1,0,1,1,0,0,1,1,0,1,0,0] => [1,1,0,1,1,0,0,1,1,0,1,0,0,0] => [5,4,6,2,3,1,7] => [[[[.,.],[.,.]],[.,.]],[.,.]] => 0
[1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,0,1,1,0,0,1,1,1,0,0,0,0] => [4,5,6,2,3,1,7] => [[[.,[.,[.,.]]],[.,.]],[.,.]] => 0
[1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,0,1,1,0,1,0,0,1,0,1,0,0] => [6,5,3,2,4,1,7] => [[[[[.,.],.],.],[.,.]],[.,.]] => 0
[1,0,1,1,0,1,0,0,1,1,0,0] => [1,1,0,1,1,0,1,0,0,1,1,0,0,0] => [5,6,3,2,4,1,7] => [[[[.,[.,.]],.],[.,.]],[.,.]] => 0
[1,0,1,1,0,1,0,1,0,0,1,0] => [1,1,0,1,1,0,1,0,1,0,0,1,0,0] => [6,4,3,2,5,1,7] => [[[[[.,.],.],.],[.,.]],[.,.]] => 0
[1,0,1,1,0,1,0,1,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,1,0,0,0] => [5,4,3,2,6,1,7] => [[[[[.,.],.],.],[.,.]],[.,.]] => 0
[1,0,1,1,0,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,0,1,1,0,0,0,0] => [4,5,3,2,6,1,7] => [[[[.,[.,.]],.],[.,.]],[.,.]] => 0
[1,0,1,1,0,1,1,0,0,0,1,0] => [1,1,0,1,1,0,1,1,0,0,0,1,0,0] => [6,3,4,2,5,1,7] => [[[[.,.],[.,.]],[.,.]],[.,.]] => 0
[1,0,1,1,0,1,1,0,0,1,0,0] => [1,1,0,1,1,0,1,1,0,0,1,0,0,0] => [5,3,4,2,6,1,7] => [[[[.,.],[.,.]],[.,.]],[.,.]] => 0
[1,0,1,1,0,1,1,0,1,0,0,0] => [1,1,0,1,1,0,1,1,0,1,0,0,0,0] => [4,3,5,2,6,1,7] => [[[[.,.],[.,.]],[.,.]],[.,.]] => 0
[1,0,1,1,0,1,1,1,0,0,0,0] => [1,1,0,1,1,0,1,1,1,0,0,0,0,0] => [3,4,5,2,6,1,7] => [[[.,[.,[.,.]]],[.,.]],[.,.]] => 0
[1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,1,0,0] => [6,5,2,3,4,1,7] => [[[[.,.],.],[.,[.,.]]],[.,.]] => 0
[1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,1,1,0,0,0,1,1,0,0,0] => [5,6,2,3,4,1,7] => [[[.,[.,.]],[.,[.,.]]],[.,.]] => 0
[1,0,1,1,1,0,0,1,0,0,1,0] => [1,1,0,1,1,1,0,0,1,0,0,1,0,0] => [6,4,2,3,5,1,7] => [[[[.,.],.],[.,[.,.]]],[.,.]] => 0
[1,0,1,1,1,0,0,1,0,1,0,0] => [1,1,0,1,1,1,0,0,1,0,1,0,0,0] => [5,4,2,3,6,1,7] => [[[[.,.],.],[.,[.,.]]],[.,.]] => 0
[1,0,1,1,1,0,0,1,1,0,0,0] => [1,1,0,1,1,1,0,0,1,1,0,0,0,0] => [4,5,2,3,6,1,7] => [[[.,[.,.]],[.,[.,.]]],[.,.]] => 0
[1,0,1,1,1,0,1,0,0,0,1,0] => [1,1,0,1,1,1,0,1,0,0,0,1,0,0] => [6,3,2,4,5,1,7] => [[[[.,.],.],[.,[.,.]]],[.,.]] => 0
[1,0,1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,1,1,0,1,0,0,1,0,0,0] => [5,3,2,4,6,1,7] => [[[[.,.],.],[.,[.,.]]],[.,.]] => 0
[1,0,1,1,1,0,1,0,1,0,0,0] => [1,1,0,1,1,1,0,1,0,1,0,0,0,0] => [4,3,2,5,6,1,7] => [[[[.,.],.],[.,[.,.]]],[.,.]] => 0
[1,0,1,1,1,0,1,1,0,0,0,0] => [1,1,0,1,1,1,0,1,1,0,0,0,0,0] => [3,4,2,5,6,1,7] => [[[.,[.,.]],[.,[.,.]]],[.,.]] => 0
>>> Load all 197 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of occurrences of the contiguous pattern [.,[.,[.,[.,.]]]] in a binary tree.
oeis:A036765 counts binary trees avoiding this pattern.
oeis:A036765 counts binary trees avoiding this pattern.
Map
prime Dyck path
Description
Return the Dyck path obtained by adding an initial up and a final down step.
Map
to 132-avoiding permutation
Description
Sends a Dyck path to a 132-avoiding permutation.
This bijection is defined in [1, Section 2].
This bijection is defined in [1, Section 2].
Map
to increasing tree
Description
Sends a permutation to its associated increasing tree.
This tree is recursively obtained by sending the unique permutation of length $0$ to the empty tree, and sending a permutation $\sigma$ of length $n \geq 1$ to a root node with two subtrees $L$ and $R$ by splitting $\sigma$ at the index $\sigma^{-1}(1)$, normalizing both sides again to permutations and sending the permutations on the left and on the right of $\sigma^{-1}(1)$ to the trees $L$ and $R$, respectively.
This tree is recursively obtained by sending the unique permutation of length $0$ to the empty tree, and sending a permutation $\sigma$ of length $n \geq 1$ to a root node with two subtrees $L$ and $R$ by splitting $\sigma$ at the index $\sigma^{-1}(1)$, normalizing both sides again to permutations and sending the permutations on the left and on the right of $\sigma^{-1}(1)$ to the trees $L$ and $R$, respectively.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!