Identifier
-
Mp00199:
Dyck paths
—prime Dyck path⟶
Dyck paths
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
St000124: Permutations ⟶ ℤ
Values
[1,0] => [1,1,0,0] => [2,1] => 1
[1,0,1,0] => [1,1,0,1,0,0] => [2,3,1] => 1
[1,1,0,0] => [1,1,1,0,0,0] => [3,1,2] => 2
[1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => [2,3,4,1] => 1
[1,0,1,1,0,0] => [1,1,0,1,1,0,0,0] => [2,4,1,3] => 2
[1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [3,1,4,2] => 2
[1,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => [3,4,1,2] => 2
[1,1,1,0,0,0] => [1,1,1,1,0,0,0,0] => [4,1,2,3] => 6
[1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [2,3,4,5,1] => 1
[1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => [2,3,5,1,4] => 2
[1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => [2,4,1,5,3] => 2
[1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => [2,4,5,1,3] => 2
[1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => [2,5,1,3,4] => 6
[1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [3,1,4,5,2] => 2
[1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0] => [3,1,5,2,4] => 4
[1,1,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => [3,4,1,5,2] => 2
[1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => [3,4,5,1,2] => 2
[1,1,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => [3,5,1,2,4] => 6
[1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [4,1,2,5,3] => 6
[1,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [4,1,5,2,3] => 6
[1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [4,5,1,2,3] => 6
[1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [5,1,2,3,4] => 24
[1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => [2,3,4,5,6,1] => 1
[1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => [2,3,4,6,1,5] => 2
[1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,0] => [2,3,5,1,6,4] => 2
[1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,1,1,0,1,0,0,0] => [2,3,5,6,1,4] => 2
[1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => [2,3,6,1,4,5] => 6
[1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,0] => [2,4,1,5,6,3] => 2
[1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,1,1,0,0,0] => [2,4,1,6,3,5] => 4
[1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,1,0,0,1,0,0] => [2,4,5,1,6,3] => 2
[1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => [2,4,5,6,1,3] => 2
[1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,1,0,0,0,0] => [2,4,6,1,3,5] => 6
[1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,0] => [2,5,1,3,6,4] => 6
[1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,1,0,0,1,0,0,0] => [2,5,1,6,3,4] => 6
[1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,1,1,0,1,0,0,0,0] => [2,5,6,1,3,4] => 6
[1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [2,6,1,3,4,5] => 24
[1,1,0,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => [3,1,4,5,6,2] => 2
[1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,1,0,0,0] => [3,1,4,6,2,5] => 4
[1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,1,0,0] => [3,1,5,2,6,4] => 4
[1,1,0,0,1,1,0,1,0,0] => [1,1,1,0,0,1,1,0,1,0,0,0] => [3,1,5,6,2,4] => 4
[1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => [3,1,6,2,4,5] => 12
[1,1,0,1,0,0,1,0,1,0] => [1,1,1,0,1,0,0,1,0,1,0,0] => [3,4,1,5,6,2] => 2
[1,1,0,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,1,0,0,0] => [3,4,1,6,2,5] => 4
[1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => [3,4,5,1,6,2] => 2
[1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [3,4,5,6,1,2] => 2
[1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [3,4,6,1,2,5] => 6
[1,1,0,1,1,0,0,0,1,0] => [1,1,1,0,1,1,0,0,0,1,0,0] => [3,5,1,2,6,4] => 6
[1,1,0,1,1,0,0,1,0,0] => [1,1,1,0,1,1,0,0,1,0,0,0] => [3,5,1,6,2,4] => 6
[1,1,0,1,1,0,1,0,0,0] => [1,1,1,0,1,1,0,1,0,0,0,0] => [3,5,6,1,2,4] => 6
[1,1,0,1,1,1,0,0,0,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => [3,6,1,2,4,5] => 24
[1,1,1,0,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => [4,1,2,5,6,3] => 6
[1,1,1,0,0,0,1,1,0,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => [4,1,2,6,3,5] => 12
[1,1,1,0,0,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,1,0,0] => [4,1,5,2,6,3] => 6
[1,1,1,0,0,1,0,1,0,0] => [1,1,1,1,0,0,1,0,1,0,0,0] => [4,1,5,6,2,3] => 6
[1,1,1,0,0,1,1,0,0,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => [4,1,6,2,3,5] => 18
[1,1,1,0,1,0,0,0,1,0] => [1,1,1,1,0,1,0,0,0,1,0,0] => [4,5,1,2,6,3] => 6
[1,1,1,0,1,0,0,1,0,0] => [1,1,1,1,0,1,0,0,1,0,0,0] => [4,5,1,6,2,3] => 6
[1,1,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => [4,5,6,1,2,3] => 6
[1,1,1,0,1,1,0,0,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => [4,6,1,2,3,5] => 24
[1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => [5,1,2,3,6,4] => 24
[1,1,1,1,0,0,0,1,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => [5,1,2,6,3,4] => 24
[1,1,1,1,0,0,1,0,0,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => [5,1,6,2,3,4] => 24
[1,1,1,1,0,1,0,0,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => [5,6,1,2,3,4] => 24
[1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [6,1,2,3,4,5] => 120
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,0] => [2,3,4,5,6,7,1] => 1
[1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,1,1,0,0,0] => [2,3,4,5,7,1,6] => 2
[1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,1,1,0,0,1,0,0] => [2,3,4,6,1,7,5] => 2
[1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,1,0,1,1,0,1,0,0,0] => [2,3,4,6,7,1,5] => 2
[1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,1,1,1,0,0,0,0] => [2,3,4,7,1,5,6] => 6
[1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,0,1,1,0,1,0,1,0,0,0] => [2,3,5,6,7,1,4] => 2
[1,0,1,1,1,0,1,1,0,0,0,0] => [1,1,0,1,1,1,0,1,1,0,0,0,0,0] => [2,5,7,1,3,4,6] => 24
[1,0,1,1,1,1,0,0,1,0,0,0] => [1,1,0,1,1,1,1,0,0,1,0,0,0,0] => [2,6,1,7,3,4,5] => 24
[1,0,1,1,1,1,0,1,0,0,0,0] => [1,1,0,1,1,1,1,0,1,0,0,0,0,0] => [2,6,7,1,3,4,5] => 24
[1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,0,1,1,1,1,1,0,0,0,0,0,0] => [2,7,1,3,4,5,6] => 120
[1,1,0,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,1,0,0,0] => [3,4,5,6,7,1,2] => 2
[1,1,1,0,1,1,0,0,0,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,1,0,0] => [4,6,1,2,3,7,5] => 24
[1,1,1,1,0,0,0,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,1,0,0] => [5,1,2,3,6,7,4] => 24
[1,1,1,1,0,0,0,0,1,1,0,0] => [1,1,1,1,1,0,0,0,0,1,1,0,0,0] => [5,1,2,3,7,4,6] => 48
[1,1,1,1,0,0,1,0,0,0,1,0] => [1,1,1,1,1,0,0,1,0,0,0,1,0,0] => [5,1,6,2,3,7,4] => 24
[1,1,1,1,0,1,0,0,0,0,1,0] => [1,1,1,1,1,0,1,0,0,0,0,1,0,0] => [5,6,1,2,3,7,4] => 24
[1,1,1,1,0,1,0,1,0,0,0,0] => [1,1,1,1,1,0,1,0,1,0,0,0,0,0] => [5,6,7,1,2,3,4] => 24
[1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0] => [6,1,2,3,4,7,5] => 120
[1,1,1,1,1,0,0,0,0,1,0,0] => [1,1,1,1,1,1,0,0,0,0,1,0,0,0] => [6,1,2,3,7,4,5] => 120
[1,1,1,1,1,0,0,0,1,0,0,0] => [1,1,1,1,1,1,0,0,0,1,0,0,0,0] => [6,1,2,7,3,4,5] => 120
[1,1,1,1,1,0,1,0,0,0,0,0] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0] => [6,7,1,2,3,4,5] => 120
[1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [7,1,2,3,4,5,6] => 720
[1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0] => [2,3,4,5,6,7,8,1] => 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0] => [3,4,5,6,7,8,1,2] => 2
[1,1,1,1,0,1,0,1,0,1,0,0,0,0] => [1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0] => [5,6,7,8,1,2,3,4] => 24
[1,1,1,1,1,0,1,0,1,0,0,0,0,0] => [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0] => [6,7,8,1,2,3,4,5] => 120
[1,1,1,1,1,1,0,1,0,0,0,0,0,0] => [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0] => [7,8,1,2,3,4,5,6] => 720
[1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0] => [8,1,2,3,4,5,6,7] => 5040
[] => [1,0] => [1] => 1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The cardinality of the preimage of the Simion-Schmidt map.
The Simion-Schmidt bijection transforms a [3,1,2]-avoiding permutation into a [3,2,1]-avoiding permutation. More generally, it can be thought of as a map $S$ that turns any permutation into a [3,2,1]-avoiding permutation. This statistic is the size of $S^{-1}(\pi)$ for each permutation $\pi$.
The map $S$ can also be realized using the quotient of the $0$-Hecke Monoid of the symmetric group by the relation $\pi_i \pi_{i+1} \pi_i = \pi_{i+1} \pi_i$, sending each element of the fiber of the quotient to the unique [3,2,1]-avoiding element in that fiber.
The Simion-Schmidt bijection transforms a [3,1,2]-avoiding permutation into a [3,2,1]-avoiding permutation. More generally, it can be thought of as a map $S$ that turns any permutation into a [3,2,1]-avoiding permutation. This statistic is the size of $S^{-1}(\pi)$ for each permutation $\pi$.
The map $S$ can also be realized using the quotient of the $0$-Hecke Monoid of the symmetric group by the relation $\pi_i \pi_{i+1} \pi_i = \pi_{i+1} \pi_i$, sending each element of the fiber of the quotient to the unique [3,2,1]-avoiding element in that fiber.
Map
prime Dyck path
Description
Return the Dyck path obtained by adding an initial up and a final down step.
Map
to 321-avoiding permutation (Krattenthaler)
Description
Krattenthaler's bijection to 321-avoiding permutations.
Draw the path of semilength $n$ in an $n\times n$ square matrix, starting at the upper left corner, with right and down steps, and staying below the diagonal. Then the permutation matrix is obtained by placing ones into the cells corresponding to the peaks of the path and placing ones into the remaining columns from left to right, such that the row indices of the cells increase.
Draw the path of semilength $n$ in an $n\times n$ square matrix, starting at the upper left corner, with right and down steps, and staying below the diagonal. Then the permutation matrix is obtained by placing ones into the cells corresponding to the peaks of the path and placing ones into the remaining columns from left to right, such that the row indices of the cells increase.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!