Identifier
- St000140: Finite Cartan types ⟶ ℤ
Values
=>
Cc0022;cc-rep
['A',1]=>1
['A',2]=>2
['B',2]=>3
['G',2]=>5
['A',3]=>5
['B',3]=>10
['C',3]=>10
['A',4]=>14
['B',4]=>35
['C',4]=>35
['D',4]=>20
['F',4]=>66
['A',5]=>42
['B',5]=>126
['C',5]=>126
['D',5]=>77
['A',6]=>132
['B',6]=>462
['C',6]=>462
['D',6]=>294
['E',6]=>418
['A',7]=>429
['B',7]=>1716
['C',7]=>1716
['D',7]=>1122
['E',7]=>2431
['A',8]=>1430
['B',8]=>6435
['C',8]=>6435
['D',8]=>4290
['E',8]=>17342
['A',9]=>4862
['B',9]=>24310
['C',9]=>24310
['D',9]=>16445
['A',10]=>16796
['B',10]=>92378
['C',10]=>92378
['D',10]=>63206
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The positive Catalan number of an irreducible finite Cartan type.
The positive Catalan number of an irreducible finite Cartan type is defined as the product
$$ Cat^+(W) = \prod_{i=1}^n \frac{d_i-2+h}{d_i} = \prod_{i=1}^n \frac{d^*_i+h}{d_i}$$
where
The positive Catalan number of an irreducible finite Cartan type is defined as the product
$$ Cat^+(W) = \prod_{i=1}^n \frac{d_i-2+h}{d_i} = \prod_{i=1}^n \frac{d^*_i+h}{d_i}$$
where
- $W$ is the Weyl group of the given Cartan type,
- $n$ is the rank of $W$,
- $d_1 \leq d_2 \leq \ldots \leq d_n$ are the degrees of the fundamental invariants of $W$,
- $d^*_1 \geq d^*_2 \geq \ldots \geq d^*_n$ are the codegrees for $W$, see [2], and
- $h = d_n$ is the corresponding Coxeter number.
- noncrossing partitions of full Coxeter support inside $W$,
- antichains not containing simple roots in the root poset,
- bounded regions within the fundamental chamber in the Shi arrangement.
References
[1] Armstrong, D. Generalized noncrossing partitions and combinatorics of Coxeter groups MathSciNet:2561274 arXiv:math/0611106
[2] wikipedia:Complex reflection group
[2] wikipedia:Complex reflection group
Code
def statistic(ct): return ReflectionGroup(ct).catalan_number(positive=True)
Created
Jun 24, 2013 at 21:32 by Christian Stump
Updated
Oct 30, 2024 at 17:22 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!