Identifier
Values
[1,0] => [1,0] => 1
[1,0,1,0] => [1,0,1,0] => 2
[1,1,0,0] => [1,1,0,0] => 2
[1,0,1,0,1,0] => [1,0,1,0,1,0] => 3
[1,0,1,1,0,0] => [1,0,1,1,0,0] => 3
[1,1,0,0,1,0] => [1,1,0,0,1,0] => 3
[1,1,0,1,0,0] => [1,0,1,1,0,0] => 3
[1,1,1,0,0,0] => [1,1,1,0,0,0] => 3
[1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => 4
[1,0,1,0,1,1,0,0] => [1,0,1,0,1,1,0,0] => 4
[1,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,0] => 4
[1,0,1,1,0,1,0,0] => [1,0,1,0,1,1,0,0] => 4
[1,0,1,1,1,0,0,0] => [1,0,1,1,1,0,0,0] => 4
[1,1,0,0,1,0,1,0] => [1,1,0,0,1,0,1,0] => 4
[1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0] => 4
[1,1,0,1,0,0,1,0] => [1,0,1,1,0,0,1,0] => 4
[1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0] => 4
[1,1,0,1,1,0,0,0] => [1,0,1,1,1,0,0,0] => 4
[1,1,1,0,0,0,1,0] => [1,1,1,0,0,0,1,0] => 4
[1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,0] => 4
[1,1,1,0,1,0,0,0] => [1,0,1,1,1,0,0,0] => 4
[1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0] => 4
[1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,0,1,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,1,0,0] => 5
[1,0,1,0,1,1,0,0,1,0] => [1,0,1,0,1,1,0,0,1,0] => 5
[1,0,1,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,1,0,0] => 5
[1,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => 5
[1,0,1,1,0,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0] => 5
[1,0,1,1,0,0,1,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => 5
[1,0,1,1,0,1,0,0,1,0] => [1,0,1,0,1,1,0,0,1,0] => 5
[1,0,1,1,0,1,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => 5
[1,0,1,1,0,1,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => 5
[1,0,1,1,1,0,0,0,1,0] => [1,0,1,1,1,0,0,0,1,0] => 5
[1,0,1,1,1,0,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => 5
[1,0,1,1,1,0,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => 5
[1,0,1,1,1,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => 5
[1,1,0,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,0] => 5
[1,1,0,0,1,0,1,1,0,0] => [1,1,0,0,1,0,1,1,0,0] => 5
[1,1,0,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => 5
[1,1,0,0,1,1,0,1,0,0] => [1,1,0,0,1,0,1,1,0,0] => 5
[1,1,0,0,1,1,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => 5
[1,1,0,1,0,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0] => 5
[1,1,0,1,0,0,1,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => 5
[1,1,0,1,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => 5
[1,1,0,1,0,1,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => 5
[1,1,0,1,0,1,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => 5
[1,1,0,1,1,0,0,0,1,0] => [1,0,1,1,1,0,0,0,1,0] => 5
[1,1,0,1,1,0,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => 5
[1,1,0,1,1,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => 5
[1,1,0,1,1,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => 5
[1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0,1,0] => 5
[1,1,1,0,0,0,1,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => 5
[1,1,1,0,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => 5
[1,1,1,0,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => 5
[1,1,1,0,0,1,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => 5
[1,1,1,0,1,0,0,0,1,0] => [1,0,1,1,1,0,0,0,1,0] => 5
[1,1,1,0,1,0,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => 5
[1,1,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => 5
[1,1,1,0,1,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => 5
[1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,0,0,0,0,1,0] => 5
[1,1,1,1,0,0,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => 5
[1,1,1,1,0,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => 5
[1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => 5
[1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => 5
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,0,1,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0] => 6
[1,0,1,0,1,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => 6
[1,0,1,0,1,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0] => 6
[1,0,1,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0] => 6
[1,0,1,0,1,1,0,0,1,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => 6
[1,0,1,0,1,1,0,0,1,1,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => 6
[1,0,1,0,1,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => 6
[1,0,1,0,1,1,0,1,0,1,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => 6
[1,0,1,0,1,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0] => 6
[1,0,1,0,1,1,1,0,0,0,1,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => 6
[1,0,1,0,1,1,1,0,0,1,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => 6
[1,0,1,0,1,1,1,0,1,0,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0] => 6
[1,0,1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0] => 6
[1,0,1,1,0,0,1,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => 6
[1,0,1,1,0,0,1,0,1,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0] => 6
[1,0,1,1,0,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => 6
[1,0,1,1,0,0,1,1,0,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0] => 6
[1,0,1,1,0,0,1,1,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => 6
[1,0,1,1,0,1,0,0,1,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => 6
[1,0,1,1,0,1,0,0,1,1,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => 6
[1,0,1,1,0,1,0,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => 6
[1,0,1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => 6
[1,0,1,1,0,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => 6
[1,0,1,1,0,1,1,0,0,0,1,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => 6
[1,0,1,1,0,1,1,0,0,1,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => 6
[1,0,1,1,0,1,1,0,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => 6
[1,0,1,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0] => 6
[1,0,1,1,1,0,0,0,1,0,1,0] => [1,0,1,1,1,0,0,0,1,0,1,0] => 6
[1,0,1,1,1,0,0,0,1,1,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => 6
[1,0,1,1,1,0,0,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => 6
[1,0,1,1,1,0,0,1,0,1,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => 6
[1,0,1,1,1,0,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => 6
[1,0,1,1,1,0,1,0,0,0,1,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => 6
[1,0,1,1,1,0,1,0,0,1,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => 6
[1,0,1,1,1,0,1,0,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => 6
[1,0,1,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0] => 6
>>> Load all 196 entries. <<<
[1,0,1,1,1,1,0,0,0,0,1,0] => [1,0,1,1,1,1,0,0,0,0,1,0] => 6
[1,0,1,1,1,1,0,0,0,1,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => 6
[1,0,1,1,1,1,0,0,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => 6
[1,0,1,1,1,1,0,1,0,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0] => 6
[1,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => 6
[1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => 6
[1,1,0,0,1,0,1,0,1,1,0,0] => [1,1,0,0,1,0,1,0,1,1,0,0] => 6
[1,1,0,0,1,0,1,1,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0,1,0] => 6
[1,1,0,0,1,0,1,1,0,1,0,0] => [1,1,0,0,1,0,1,0,1,1,0,0] => 6
[1,1,0,0,1,0,1,1,1,0,0,0] => [1,1,0,0,1,0,1,1,1,0,0,0] => 6
[1,1,0,0,1,1,0,0,1,0,1,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => 6
[1,1,0,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => 6
[1,1,0,0,1,1,0,1,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0,1,0] => 6
[1,1,0,0,1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => 6
[1,1,0,0,1,1,0,1,1,0,0,0] => [1,1,0,0,1,0,1,1,1,0,0,0] => 6
[1,1,0,0,1,1,1,0,0,0,1,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => 6
[1,1,0,0,1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => 6
[1,1,0,0,1,1,1,0,1,0,0,0] => [1,1,0,0,1,0,1,1,1,0,0,0] => 6
[1,1,0,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 6
[1,1,0,1,0,0,1,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => 6
[1,1,0,1,0,0,1,0,1,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0] => 6
[1,1,0,1,0,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => 6
[1,1,0,1,0,0,1,1,0,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0] => 6
[1,1,0,1,0,0,1,1,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => 6
[1,1,0,1,0,1,0,0,1,0,1,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => 6
[1,1,0,1,0,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => 6
[1,1,0,1,0,1,0,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => 6
[1,1,0,1,0,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => 6
[1,1,0,1,0,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => 6
[1,1,0,1,0,1,1,0,0,0,1,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => 6
[1,1,0,1,0,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => 6
[1,1,0,1,0,1,1,0,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => 6
[1,1,0,1,0,1,1,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 6
[1,1,0,1,1,0,0,0,1,0,1,0] => [1,0,1,1,1,0,0,0,1,0,1,0] => 6
[1,1,0,1,1,0,0,0,1,1,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => 6
[1,1,0,1,1,0,0,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => 6
[1,1,0,1,1,0,0,1,0,1,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => 6
[1,1,0,1,1,0,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => 6
[1,1,0,1,1,0,1,0,0,0,1,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => 6
[1,1,0,1,1,0,1,0,0,1,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => 6
[1,1,0,1,1,0,1,0,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => 6
[1,1,0,1,1,0,1,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 6
[1,1,0,1,1,1,0,0,0,0,1,0] => [1,0,1,1,1,1,0,0,0,0,1,0] => 6
[1,1,0,1,1,1,0,0,0,1,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => 6
[1,1,0,1,1,1,0,0,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => 6
[1,1,0,1,1,1,0,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 6
[1,1,0,1,1,1,1,0,0,0,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => 6
[1,1,1,0,0,0,1,0,1,0,1,0] => [1,1,1,0,0,0,1,0,1,0,1,0] => 6
[1,1,1,0,0,0,1,0,1,1,0,0] => [1,1,1,0,0,0,1,0,1,1,0,0] => 6
[1,1,1,0,0,0,1,1,0,0,1,0] => [1,1,1,0,0,0,1,1,0,0,1,0] => 6
[1,1,1,0,0,0,1,1,0,1,0,0] => [1,1,1,0,0,0,1,0,1,1,0,0] => 6
[1,1,1,0,0,0,1,1,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => 6
[1,1,1,0,0,1,0,0,1,0,1,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => 6
[1,1,1,0,0,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => 6
[1,1,1,0,0,1,0,1,0,0,1,0] => [1,1,1,0,0,0,1,1,0,0,1,0] => 6
[1,1,1,0,0,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => 6
[1,1,1,0,0,1,0,1,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => 6
[1,1,1,0,0,1,1,0,0,0,1,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => 6
[1,1,1,0,0,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => 6
[1,1,1,0,0,1,1,0,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => 6
[1,1,1,0,0,1,1,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 6
[1,1,1,0,1,0,0,0,1,0,1,0] => [1,0,1,1,1,0,0,0,1,0,1,0] => 6
[1,1,1,0,1,0,0,0,1,1,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => 6
[1,1,1,0,1,0,0,1,0,0,1,0] => [1,1,1,0,0,0,1,1,0,0,1,0] => 6
[1,1,1,0,1,0,0,1,0,1,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => 6
[1,1,1,0,1,0,0,1,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => 6
[1,1,1,0,1,0,1,0,0,0,1,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => 6
[1,1,1,0,1,0,1,0,0,1,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => 6
[1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => 6
[1,1,1,0,1,0,1,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 6
[1,1,1,0,1,1,0,0,0,0,1,0] => [1,0,1,1,1,1,0,0,0,0,1,0] => 6
[1,1,1,0,1,1,0,0,0,1,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => 6
[1,1,1,0,1,1,0,0,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => 6
[1,1,1,0,1,1,0,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 6
[1,1,1,0,1,1,1,0,0,0,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => 6
[1,1,1,1,0,0,0,0,1,0,1,0] => [1,1,1,1,0,0,0,0,1,0,1,0] => 6
[1,1,1,1,0,0,0,0,1,1,0,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => 6
[1,1,1,1,0,0,0,1,0,0,1,0] => [1,1,1,0,0,0,1,1,0,0,1,0] => 6
[1,1,1,1,0,0,0,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => 6
[1,1,1,1,0,0,0,1,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => 6
[1,1,1,1,0,0,1,0,0,0,1,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => 6
[1,1,1,1,0,0,1,0,0,1,0,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => 6
[1,1,1,1,0,0,1,0,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => 6
[1,1,1,1,0,0,1,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 6
[1,1,1,1,0,1,0,0,0,0,1,0] => [1,0,1,1,1,1,0,0,0,0,1,0] => 6
[1,1,1,1,0,1,0,0,0,1,0,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => 6
[1,1,1,1,0,1,0,0,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => 6
[1,1,1,1,0,1,0,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 6
[1,1,1,1,0,1,1,0,0,0,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => 6
[1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => 6
[1,1,1,1,1,0,0,0,0,1,0,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => 6
[1,1,1,1,1,0,0,0,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => 6
[1,1,1,1,1,0,0,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 6
[1,1,1,1,1,0,1,0,0,0,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => 6
[1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => 6
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The pyramid weight of the Dyck path.
The pyramid weight of a Dyck path is the sum of the lengths of the maximal pyramids (maximal sequences of the form $1^h0^h$) in the path.
Maximal pyramids are called lower interactions by Le Borgne [2], see St000331The number of upper interactions of a Dyck path. and St000335The difference of lower and upper interactions. for related statistics.
Map
bounce path
Description
Sends a Dyck path $D$ of length $2n$ to its bounce path.
This path is formed by starting at the endpoint $(n,n)$ of $D$ and travelling west until encountering the first vertical step of $D$, then south until hitting the diagonal, then west again to hit $D$, etc. until the point $(0,0)$ is reached.
This map is the first part of the zeta map Mp00030zeta map.