Identifier
-
Mp00103:
Dyck paths
—peeling map⟶
Dyck paths
St000144: Dyck paths ⟶ ℤ
Values
[1,0] => [1,0] => 1
[1,0,1,0] => [1,0,1,0] => 2
[1,1,0,0] => [1,0,1,0] => 2
[1,0,1,0,1,0] => [1,0,1,0,1,0] => 3
[1,0,1,1,0,0] => [1,0,1,0,1,0] => 3
[1,1,0,0,1,0] => [1,0,1,0,1,0] => 3
[1,1,0,1,0,0] => [1,0,1,0,1,0] => 3
[1,1,1,0,0,0] => [1,0,1,0,1,0] => 3
[1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => 4
[1,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,0] => 4
[1,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,0] => 4
[1,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,0] => 4
[1,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,0] => 4
[1,1,0,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => 4
[1,1,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0] => 4
[1,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0] => 4
[1,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0] => 4
[1,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0] => 4
[1,1,1,0,0,0,1,0] => [1,0,1,0,1,0,1,0] => 4
[1,1,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0] => 4
[1,1,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0] => 4
[1,1,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0] => 4
[1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,0,1,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,0,1,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,0,1,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,0,1,1,0,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,0,1,1,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,0,1,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,0,1,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,0,1,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,0,1,1,1,0,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,0,1,1,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,0,1,1,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => 5
[1,1,0,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,0,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,0,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,0,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,0,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,0,1,0,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,0,1,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,0,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,0,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,0,1,1,0,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,0,1,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,0,1,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => 5
[1,1,1,0,0,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,1,0,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,1,0,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,1,0,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,1,0,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,1,0,1,0,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,1,0,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,1,0,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => 5
[1,1,1,1,0,0,0,0,1,0] => [1,0,1,1,0,0,1,0,1,0] => 5
[1,1,1,1,0,0,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0] => 5
[1,1,1,1,0,0,1,0,0,0] => [1,0,1,1,0,0,1,0,1,0] => 5
[1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,0,1,0,0,1,0] => 4
[1,1,1,1,1,0,0,0,0,0] => [1,0,1,1,1,0,0,0,1,0] => 5
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,0,1,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,0,1,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,0,1,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,0,1,1,0,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,0,1,1,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,0,1,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,0,1,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,0,1,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,0,1,1,1,0,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,0,1,1,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,0,1,1,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => 6
[1,0,1,1,0,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,0,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,0,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,0,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,0,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,0,1,0,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,0,1,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,0,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,0,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,0,1,1,0,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,0,1,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,0,1,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => 6
[1,0,1,1,1,0,0,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,1,0,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,1,0,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,1,0,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,1,0,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,1,0,1,0,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,1,0,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,1,0,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => 6
>>> Load all 196 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The pyramid weight of the Dyck path.
The pyramid weight of a Dyck path is the sum of the lengths of the maximal pyramids (maximal sequences of the form $1^h0^h$) in the path.
Maximal pyramids are called lower interactions by Le Borgne [2], see St000331The number of upper interactions of a Dyck path. and St000335The difference of lower and upper interactions. for related statistics.
The pyramid weight of a Dyck path is the sum of the lengths of the maximal pyramids (maximal sequences of the form $1^h0^h$) in the path.
Maximal pyramids are called lower interactions by Le Borgne [2], see St000331The number of upper interactions of a Dyck path. and St000335The difference of lower and upper interactions. for related statistics.
Map
peeling map
Description
Send a Dyck path to its peeled Dyck path.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!