Identifier
-
Mp00023:
Dyck paths
—to non-crossing permutation⟶
Permutations
Mp00062: Permutations —Lehmer-code to major-code bijection⟶ Permutations
Mp00237: Permutations —descent views to invisible inversion bottoms⟶ Permutations
St000155: Permutations ⟶ ℤ
Values
[1,0] => [1] => [1] => [1] => 0
[1,0,1,0] => [1,2] => [1,2] => [1,2] => 0
[1,1,0,0] => [2,1] => [2,1] => [2,1] => 1
[1,0,1,0,1,0] => [1,2,3] => [1,2,3] => [1,2,3] => 0
[1,0,1,1,0,0] => [1,3,2] => [3,1,2] => [3,1,2] => 1
[1,1,0,0,1,0] => [2,1,3] => [2,1,3] => [2,1,3] => 1
[1,1,0,1,0,0] => [2,3,1] => [1,3,2] => [1,3,2] => 1
[1,1,1,0,0,0] => [3,2,1] => [3,2,1] => [2,3,1] => 2
[1,0,1,0,1,0,1,0] => [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0
[1,0,1,0,1,1,0,0] => [1,2,4,3] => [4,1,2,3] => [4,1,2,3] => 1
[1,0,1,1,0,0,1,0] => [1,3,2,4] => [3,1,2,4] => [3,1,2,4] => 1
[1,0,1,1,0,1,0,0] => [1,3,4,2] => [2,4,1,3] => [4,2,1,3] => 1
[1,0,1,1,1,0,0,0] => [1,4,3,2] => [4,3,1,2] => [3,1,4,2] => 2
[1,1,0,0,1,0,1,0] => [2,1,3,4] => [2,1,3,4] => [2,1,3,4] => 1
[1,1,0,0,1,1,0,0] => [2,1,4,3] => [1,4,2,3] => [1,4,2,3] => 1
[1,1,0,1,0,0,1,0] => [2,3,1,4] => [1,3,2,4] => [1,3,2,4] => 1
[1,1,0,1,0,1,0,0] => [2,3,4,1] => [1,2,4,3] => [1,2,4,3] => 1
[1,1,0,1,1,0,0,0] => [2,4,3,1] => [4,1,3,2] => [4,3,1,2] => 2
[1,1,1,0,0,0,1,0] => [3,2,1,4] => [3,2,1,4] => [2,3,1,4] => 2
[1,1,1,0,0,1,0,0] => [3,2,4,1] => [2,1,4,3] => [2,1,4,3] => 2
[1,1,1,0,1,0,0,0] => [4,2,3,1] => [2,4,3,1] => [3,2,4,1] => 2
[1,1,1,1,0,0,0,0] => [4,3,2,1] => [4,3,2,1] => [2,3,4,1] => 3
[1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0] => [1,2,3,5,4] => [5,1,2,3,4] => [5,1,2,3,4] => 1
[1,0,1,0,1,1,0,0,1,0] => [1,2,4,3,5] => [4,1,2,3,5] => [4,1,2,3,5] => 1
[1,0,1,0,1,1,0,1,0,0] => [1,2,4,5,3] => [3,5,1,2,4] => [5,1,3,2,4] => 1
[1,0,1,0,1,1,1,0,0,0] => [1,2,5,4,3] => [5,4,1,2,3] => [4,1,2,5,3] => 2
[1,0,1,1,0,0,1,0,1,0] => [1,3,2,4,5] => [3,1,2,4,5] => [3,1,2,4,5] => 1
[1,0,1,1,0,0,1,1,0,0] => [1,3,2,5,4] => [2,5,1,3,4] => [5,2,1,3,4] => 1
[1,0,1,1,0,1,0,0,1,0] => [1,3,4,2,5] => [2,4,1,3,5] => [4,2,1,3,5] => 1
[1,0,1,1,0,1,0,1,0,0] => [1,3,4,5,2] => [2,3,5,1,4] => [5,2,3,1,4] => 1
[1,0,1,1,0,1,1,0,0,0] => [1,3,5,4,2] => [5,2,4,1,3] => [4,5,1,2,3] => 2
[1,0,1,1,1,0,0,0,1,0] => [1,4,3,2,5] => [4,3,1,2,5] => [3,1,4,2,5] => 2
[1,0,1,1,1,0,0,1,0,0] => [1,4,3,5,2] => [3,2,5,1,4] => [5,3,2,1,4] => 2
[1,0,1,1,1,0,1,0,0,0] => [1,5,3,4,2] => [3,5,4,1,2] => [4,1,3,5,2] => 2
[1,0,1,1,1,1,0,0,0,0] => [1,5,4,3,2] => [5,4,3,1,2] => [3,1,4,5,2] => 3
[1,1,0,0,1,0,1,0,1,0] => [2,1,3,4,5] => [2,1,3,4,5] => [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,1,0,0] => [2,1,3,5,4] => [1,5,2,3,4] => [1,5,2,3,4] => 1
[1,1,0,0,1,1,0,0,1,0] => [2,1,4,3,5] => [1,4,2,3,5] => [1,4,2,3,5] => 1
[1,1,0,0,1,1,0,1,0,0] => [2,1,4,5,3] => [1,3,5,2,4] => [1,5,3,2,4] => 1
[1,1,0,0,1,1,1,0,0,0] => [2,1,5,4,3] => [5,1,4,2,3] => [5,4,2,1,3] => 2
[1,1,0,1,0,0,1,0,1,0] => [2,3,1,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => 1
[1,1,0,1,0,0,1,1,0,0] => [2,3,1,5,4] => [1,2,5,3,4] => [1,2,5,3,4] => 1
[1,1,0,1,0,1,0,0,1,0] => [2,3,4,1,5] => [1,2,4,3,5] => [1,2,4,3,5] => 1
[1,1,0,1,0,1,0,1,0,0] => [2,3,4,5,1] => [1,2,3,5,4] => [1,2,3,5,4] => 1
[1,1,0,1,0,1,1,0,0,0] => [2,3,5,4,1] => [5,1,2,4,3] => [5,1,4,2,3] => 2
[1,1,0,1,1,0,0,0,1,0] => [2,4,3,1,5] => [4,1,3,2,5] => [4,3,1,2,5] => 2
[1,1,0,1,1,0,0,1,0,0] => [2,4,3,5,1] => [3,1,2,5,4] => [3,1,2,5,4] => 2
[1,1,0,1,1,0,1,0,0,0] => [2,5,3,4,1] => [3,5,1,4,2] => [5,4,3,1,2] => 2
[1,1,0,1,1,1,0,0,0,0] => [2,5,4,3,1] => [5,4,1,3,2] => [4,3,1,5,2] => 3
[1,1,1,0,0,0,1,0,1,0] => [3,2,1,4,5] => [3,2,1,4,5] => [2,3,1,4,5] => 2
[1,1,1,0,0,0,1,1,0,0] => [3,2,1,5,4] => [2,1,5,3,4] => [2,1,5,3,4] => 2
[1,1,1,0,0,1,0,0,1,0] => [3,2,4,1,5] => [2,1,4,3,5] => [2,1,4,3,5] => 2
[1,1,1,0,0,1,0,1,0,0] => [3,2,4,5,1] => [2,1,3,5,4] => [2,1,3,5,4] => 2
[1,1,1,0,0,1,1,0,0,0] => [3,2,5,4,1] => [1,5,2,4,3] => [1,5,4,2,3] => 2
[1,1,1,0,1,0,0,0,1,0] => [4,2,3,1,5] => [2,4,3,1,5] => [3,2,4,1,5] => 2
[1,1,1,0,1,0,0,1,0,0] => [4,2,3,5,1] => [2,3,1,5,4] => [3,2,1,5,4] => 2
[1,1,1,0,1,0,1,0,0,0] => [5,2,3,4,1] => [2,3,5,4,1] => [4,2,3,5,1] => 2
[1,1,1,0,1,1,0,0,0,0] => [5,2,4,3,1] => [5,2,4,3,1] => [3,4,5,1,2] => 3
[1,1,1,1,0,0,0,0,1,0] => [4,3,2,1,5] => [4,3,2,1,5] => [2,3,4,1,5] => 3
[1,1,1,1,0,0,0,1,0,0] => [4,3,2,5,1] => [3,2,1,5,4] => [2,3,1,5,4] => 3
[1,1,1,1,0,0,1,0,0,0] => [5,3,2,4,1] => [3,2,5,4,1] => [4,3,2,5,1] => 3
[1,1,1,1,0,1,0,0,0,0] => [5,3,4,2,1] => [2,5,4,3,1] => [3,2,4,5,1] => 3
[1,1,1,1,1,0,0,0,0,0] => [5,4,3,2,1] => [5,4,3,2,1] => [2,3,4,5,1] => 4
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,0,1,0,1,0,1,0,1,1,0,0] => [1,2,3,4,6,5] => [6,1,2,3,4,5] => [6,1,2,3,4,5] => 1
[1,0,1,0,1,0,1,1,0,0,1,0] => [1,2,3,5,4,6] => [5,1,2,3,4,6] => [5,1,2,3,4,6] => 1
[1,0,1,0,1,0,1,1,0,1,0,0] => [1,2,3,5,6,4] => [4,6,1,2,3,5] => [6,1,2,4,3,5] => 1
[1,0,1,0,1,0,1,1,1,0,0,0] => [1,2,3,6,5,4] => [6,5,1,2,3,4] => [5,1,2,3,6,4] => 2
[1,0,1,0,1,1,0,0,1,0,1,0] => [1,2,4,3,5,6] => [4,1,2,3,5,6] => [4,1,2,3,5,6] => 1
[1,0,1,0,1,1,0,0,1,1,0,0] => [1,2,4,3,6,5] => [3,6,1,2,4,5] => [6,1,3,2,4,5] => 1
[1,0,1,0,1,1,0,1,0,0,1,0] => [1,2,4,5,3,6] => [3,5,1,2,4,6] => [5,1,3,2,4,6] => 1
[1,0,1,0,1,1,0,1,0,1,0,0] => [1,2,4,5,6,3] => [3,4,6,1,2,5] => [6,1,3,4,2,5] => 1
[1,0,1,0,1,1,0,1,1,0,0,0] => [1,2,4,6,5,3] => [6,3,5,1,2,4] => [5,1,6,2,3,4] => 2
[1,0,1,0,1,1,1,0,0,0,1,0] => [1,2,5,4,3,6] => [5,4,1,2,3,6] => [4,1,2,5,3,6] => 2
[1,0,1,0,1,1,1,0,0,1,0,0] => [1,2,5,4,6,3] => [4,3,6,1,2,5] => [6,1,4,3,2,5] => 2
[1,0,1,0,1,1,1,0,1,0,0,0] => [1,2,6,4,5,3] => [4,6,5,1,2,3] => [5,1,2,4,6,3] => 2
[1,0,1,0,1,1,1,1,0,0,0,0] => [1,2,6,5,4,3] => [6,5,4,1,2,3] => [4,1,2,5,6,3] => 3
[1,0,1,1,0,0,1,0,1,0,1,0] => [1,3,2,4,5,6] => [3,1,2,4,5,6] => [3,1,2,4,5,6] => 1
[1,0,1,1,0,0,1,0,1,1,0,0] => [1,3,2,4,6,5] => [2,6,1,3,4,5] => [6,2,1,3,4,5] => 1
[1,0,1,1,0,0,1,1,0,0,1,0] => [1,3,2,5,4,6] => [2,5,1,3,4,6] => [5,2,1,3,4,6] => 1
[1,0,1,1,0,0,1,1,0,1,0,0] => [1,3,2,5,6,4] => [2,4,6,1,3,5] => [6,2,1,4,3,5] => 1
[1,0,1,1,0,0,1,1,1,0,0,0] => [1,3,2,6,5,4] => [6,2,5,1,3,4] => [5,6,1,2,4,3] => 2
[1,0,1,1,0,1,0,0,1,0,1,0] => [1,3,4,2,5,6] => [2,4,1,3,5,6] => [4,2,1,3,5,6] => 1
[1,0,1,1,0,1,0,0,1,1,0,0] => [1,3,4,2,6,5] => [2,3,6,1,4,5] => [6,2,3,1,4,5] => 1
[1,0,1,1,0,1,0,1,0,0,1,0] => [1,3,4,5,2,6] => [2,3,5,1,4,6] => [5,2,3,1,4,6] => 1
[1,0,1,1,0,1,0,1,0,1,0,0] => [1,3,4,5,6,2] => [2,3,4,6,1,5] => [6,2,3,4,1,5] => 1
[1,0,1,1,0,1,0,1,1,0,0,0] => [1,3,4,6,5,2] => [6,2,3,5,1,4] => [5,6,2,1,3,4] => 2
[1,0,1,1,0,1,1,0,0,0,1,0] => [1,3,5,4,2,6] => [5,2,4,1,3,6] => [4,5,1,2,3,6] => 2
[1,0,1,1,0,1,1,0,0,1,0,0] => [1,3,5,4,6,2] => [4,2,3,6,1,5] => [6,4,2,3,1,5] => 2
[1,0,1,1,0,1,1,0,1,0,0,0] => [1,3,6,4,5,2] => [4,6,2,5,1,3] => [5,6,1,4,2,3] => 2
[1,0,1,1,0,1,1,1,0,0,0,0] => [1,3,6,5,4,2] => [6,5,2,4,1,3] => [4,5,1,2,6,3] => 3
[1,0,1,1,1,0,0,0,1,0,1,0] => [1,4,3,2,5,6] => [4,3,1,2,5,6] => [3,1,4,2,5,6] => 2
[1,0,1,1,1,0,0,0,1,1,0,0] => [1,4,3,2,6,5] => [3,2,6,1,4,5] => [6,3,2,1,4,5] => 2
[1,0,1,1,1,0,0,1,0,0,1,0] => [1,4,3,5,2,6] => [3,2,5,1,4,6] => [5,3,2,1,4,6] => 2
[1,0,1,1,1,0,0,1,0,1,0,0] => [1,4,3,5,6,2] => [3,2,4,6,1,5] => [6,3,2,4,1,5] => 2
[1,0,1,1,1,0,0,1,1,0,0,0] => [1,4,3,6,5,2] => [2,6,3,5,1,4] => [5,2,6,1,3,4] => 2
[1,0,1,1,1,0,1,0,0,0,1,0] => [1,5,3,4,2,6] => [3,5,4,1,2,6] => [4,1,3,5,2,6] => 2
[1,0,1,1,1,0,1,0,0,1,0,0] => [1,5,3,4,6,2] => [3,4,2,6,1,5] => [6,4,3,2,1,5] => 2
[1,0,1,1,1,0,1,0,1,0,0,0] => [1,6,3,4,5,2] => [3,4,6,5,1,2] => [5,1,3,4,6,2] => 2
[1,0,1,1,1,0,1,1,0,0,0,0] => [1,6,3,5,4,2] => [6,3,5,4,1,2] => [4,1,5,6,2,3] => 3
>>> Load all 196 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of exceedances (also excedences) of a permutation.
This is defined as $exc(\sigma) = \#\{ i : \sigma(i) > i \}$.
It is known that the number of exceedances is equidistributed with the number of descents, and that the bistatistic $(exc,den)$ is Euler-Mahonian. Here, $den$ is the Denert index of a permutation, see St000156The Denert index of a permutation..
This is defined as $exc(\sigma) = \#\{ i : \sigma(i) > i \}$.
It is known that the number of exceedances is equidistributed with the number of descents, and that the bistatistic $(exc,den)$ is Euler-Mahonian. Here, $den$ is the Denert index of a permutation, see St000156The Denert index of a permutation..
Map
Lehmer-code to major-code bijection
Description
Sends a permutation to the unique permutation such that the Lehmer code is sent to the major code.
The Lehmer code encodes the inversions of a permutation and the major code encodes its major index. In particular, the number of inversions of a permutation equals the major index of its image under this map.
* The Lehmer code of a permutation $\sigma$ is given by $L(\sigma) = l_1 \ldots l_n$ with $l_i = \# \{ j > i : \sigma_j < \sigma_i \}$. In particular, $l_i$ is the number of boxes in the $i$-th column of the Rothe diagram. For example, the Lehmer code of $\sigma = [4,3,1,5,2]$ is $32010$. The Lehmer code $L : \mathfrak{S}_n\ \tilde\longrightarrow\ S_n$ is a bijection between permutations of size $n$ and sequences $l_1\ldots l_n \in \mathbf{N}^n$ with $l_i \leq i$.
* The major code $M(\sigma)$ of a permutation $\sigma \in \mathfrak{S}_n$ is a way to encode a permutation as a sequence $m_1 m_2 \ldots m_n$ with $m_i \geq i$. To define $m_i$, let $\operatorname{del}_i(\sigma)$ be the normalized permutation obtained by removing all $\sigma_j < i$ from the one-line notation of $\sigma$. The $i$-th index is then given by
$$m_i = \operatorname{maj}(\operatorname{del}_i(\sigma)) - \operatorname{maj}(\operatorname{del}_{i-1}(\sigma)).$$
For example, the permutation $[9,3,5,7,2,1,4,6,8]$ has major code $[5, 0, 1, 0, 1, 2, 0, 1, 0]$ since
$$\operatorname{maj}([8,2,4,6,1,3,5,7]) = 5, \quad \operatorname{maj}([7,1,3,5,2,4,6]) = 5, \quad \operatorname{maj}([6,2,4,1,3,5]) = 4,$$
$$\operatorname{maj}([5,1,3,2,4]) = 4, \quad \operatorname{maj}([4,2,1,3]) = 3, \quad \operatorname{maj}([3,1,2]) = 1, \quad \operatorname{maj}([2,1]) = 1.$$
Observe that the sum of the major code of $\sigma$ equals the major index of $\sigma$.
The Lehmer code encodes the inversions of a permutation and the major code encodes its major index. In particular, the number of inversions of a permutation equals the major index of its image under this map.
* The Lehmer code of a permutation $\sigma$ is given by $L(\sigma) = l_1 \ldots l_n$ with $l_i = \# \{ j > i : \sigma_j < \sigma_i \}$. In particular, $l_i$ is the number of boxes in the $i$-th column of the Rothe diagram. For example, the Lehmer code of $\sigma = [4,3,1,5,2]$ is $32010$. The Lehmer code $L : \mathfrak{S}_n\ \tilde\longrightarrow\ S_n$ is a bijection between permutations of size $n$ and sequences $l_1\ldots l_n \in \mathbf{N}^n$ with $l_i \leq i$.
* The major code $M(\sigma)$ of a permutation $\sigma \in \mathfrak{S}_n$ is a way to encode a permutation as a sequence $m_1 m_2 \ldots m_n$ with $m_i \geq i$. To define $m_i$, let $\operatorname{del}_i(\sigma)$ be the normalized permutation obtained by removing all $\sigma_j < i$ from the one-line notation of $\sigma$. The $i$-th index is then given by
$$m_i = \operatorname{maj}(\operatorname{del}_i(\sigma)) - \operatorname{maj}(\operatorname{del}_{i-1}(\sigma)).$$
For example, the permutation $[9,3,5,7,2,1,4,6,8]$ has major code $[5, 0, 1, 0, 1, 2, 0, 1, 0]$ since
$$\operatorname{maj}([8,2,4,6,1,3,5,7]) = 5, \quad \operatorname{maj}([7,1,3,5,2,4,6]) = 5, \quad \operatorname{maj}([6,2,4,1,3,5]) = 4,$$
$$\operatorname{maj}([5,1,3,2,4]) = 4, \quad \operatorname{maj}([4,2,1,3]) = 3, \quad \operatorname{maj}([3,1,2]) = 1, \quad \operatorname{maj}([2,1]) = 1.$$
Observe that the sum of the major code of $\sigma$ equals the major index of $\sigma$.
Map
to non-crossing permutation
Description
Sends a Dyck path $D$ with valley at positions $\{(i_1,j_1),\ldots,(i_k,j_k)\}$ to the unique non-crossing permutation $\pi$ having descents $\{i_1,\ldots,i_k\}$ and whose inverse has descents $\{j_1,\ldots,j_k\}$.
It sends the area St000012The area of a Dyck path. to the number of inversions St000018The number of inversions of a permutation. and the major index St000027The major index of a Dyck path. to $n(n-1)$ minus the sum of the major index St000004The major index of a permutation. and the inverse major index St000305The inverse major index of a permutation..
It sends the area St000012The area of a Dyck path. to the number of inversions St000018The number of inversions of a permutation. and the major index St000027The major index of a Dyck path. to $n(n-1)$ minus the sum of the major index St000004The major index of a permutation. and the inverse major index St000305The inverse major index of a permutation..
Map
descent views to invisible inversion bottoms
Description
Return a permutation whose multiset of invisible inversion bottoms is the multiset of descent views of the given permutation.
This map is similar to Mp00235descent views to invisible inversion bottoms, but different beginning with permutations of six elements.
An invisible inversion of a permutation $\sigma$ is a pair $i < j$ such that $i < \sigma(j) < \sigma(i)$. The element $\sigma(j)$ is then an invisible inversion bottom.
A descent view in a permutation $\pi$ is an element $\pi(j)$ such that $\pi(i+1) < \pi(j) < \pi(i)$, and additionally the smallest element in the decreasing run containing $\pi(i)$ is smaller than the smallest element in the decreasing run containing $\pi(j)$.
This map is a bijection $\chi:\mathfrak S_n \to \mathfrak S_n$, such that
This map is similar to Mp00235descent views to invisible inversion bottoms, but different beginning with permutations of six elements.
An invisible inversion of a permutation $\sigma$ is a pair $i < j$ such that $i < \sigma(j) < \sigma(i)$. The element $\sigma(j)$ is then an invisible inversion bottom.
A descent view in a permutation $\pi$ is an element $\pi(j)$ such that $\pi(i+1) < \pi(j) < \pi(i)$, and additionally the smallest element in the decreasing run containing $\pi(i)$ is smaller than the smallest element in the decreasing run containing $\pi(j)$.
This map is a bijection $\chi:\mathfrak S_n \to \mathfrak S_n$, such that
- the multiset of descent views in $\pi$ is the multiset of invisible inversion bottoms in $\chi(\pi)$,
- the set of left-to-right maximima of $\pi$ is the set of maximal elements in the cycles of $\chi(\pi)$,
- the set of global ascent of $\pi$ is the set of global ascent of $\chi(\pi)$,
- the set of maximal elements in the decreasing runs of $\pi$ is the set of deficiency positions of $\chi(\pi)$, and
- the set of minimal elements in the decreasing runs of $\pi$ is the set of deficiency values of $\chi(\pi)$.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!