Identifier
Values
[1] => [1,0] => [1,1,0,0] => [2,1] => 1
[1,2] => [1,0,1,0] => [1,1,0,1,0,0] => [2,3,1] => 3
[2,1] => [1,1,0,0] => [1,1,1,0,0,0] => [3,1,2] => 1
[1,2,3] => [1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => [2,3,4,1] => 6
[1,3,2] => [1,0,1,1,0,0] => [1,1,0,1,1,0,0,0] => [2,4,1,3] => 3
[2,1,3] => [1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [3,1,4,2] => 4
[2,3,1] => [1,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => [3,4,1,2] => 3
[3,1,2] => [1,1,1,0,0,0] => [1,1,1,1,0,0,0,0] => [4,1,2,3] => 1
[3,2,1] => [1,1,1,0,0,0] => [1,1,1,1,0,0,0,0] => [4,1,2,3] => 1
[1,2,3,4] => [1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [2,3,4,5,1] => 10
[1,2,4,3] => [1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => [2,3,5,1,4] => 6
[1,3,2,4] => [1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => [2,4,1,5,3] => 7
[1,3,4,2] => [1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => [2,4,5,1,3] => 6
[1,4,2,3] => [1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => [2,5,1,3,4] => 3
[1,4,3,2] => [1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => [2,5,1,3,4] => 3
[2,1,3,4] => [1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [3,1,4,5,2] => 8
[2,1,4,3] => [1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0] => [3,1,5,2,4] => 4
[2,3,1,4] => [1,1,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => [3,4,1,5,2] => 7
[2,3,4,1] => [1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => [3,4,5,1,2] => 6
[2,4,1,3] => [1,1,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => [3,5,1,2,4] => 3
[2,4,3,1] => [1,1,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => [3,5,1,2,4] => 3
[3,1,2,4] => [1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [4,1,2,5,3] => 5
[3,1,4,2] => [1,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [4,1,5,2,3] => 4
[3,2,1,4] => [1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [4,1,2,5,3] => 5
[3,2,4,1] => [1,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [4,1,5,2,3] => 4
[3,4,1,2] => [1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [4,5,1,2,3] => 3
[3,4,2,1] => [1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [4,5,1,2,3] => 3
[4,1,2,3] => [1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [5,1,2,3,4] => 1
[4,1,3,2] => [1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [5,1,2,3,4] => 1
[4,2,1,3] => [1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [5,1,2,3,4] => 1
[4,2,3,1] => [1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [5,1,2,3,4] => 1
[4,3,1,2] => [1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [5,1,2,3,4] => 1
[4,3,2,1] => [1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [5,1,2,3,4] => 1
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => [2,3,4,5,6,1] => 15
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => [2,3,4,6,1,5] => 10
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,0] => [2,3,5,1,6,4] => 11
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,1,1,0,1,0,0,0] => [2,3,5,6,1,4] => 10
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => [2,3,6,1,4,5] => 6
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => [2,3,6,1,4,5] => 6
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,0] => [2,4,1,5,6,3] => 12
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,1,1,0,0,0] => [2,4,1,6,3,5] => 7
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,1,0,0,1,0,0] => [2,4,5,1,6,3] => 11
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => [2,4,5,6,1,3] => 10
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,1,0,0,0,0] => [2,4,6,1,3,5] => 6
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,1,0,0,0,0] => [2,4,6,1,3,5] => 6
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,0] => [2,5,1,3,6,4] => 8
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,1,0,0,1,0,0,0] => [2,5,1,6,3,4] => 7
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,0] => [2,5,1,3,6,4] => 8
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,1,0,0,1,0,0,0] => [2,5,1,6,3,4] => 7
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,1,1,0,1,0,0,0,0] => [2,5,6,1,3,4] => 6
[1,4,5,3,2] => [1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,1,1,0,1,0,0,0,0] => [2,5,6,1,3,4] => 6
[1,5,2,3,4] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [2,6,1,3,4,5] => 3
[1,5,2,4,3] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [2,6,1,3,4,5] => 3
[1,5,3,2,4] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [2,6,1,3,4,5] => 3
[1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [2,6,1,3,4,5] => 3
[1,5,4,2,3] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [2,6,1,3,4,5] => 3
[1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [2,6,1,3,4,5] => 3
[2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => [3,1,4,5,6,2] => 13
[2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,1,0,0,0] => [3,1,4,6,2,5] => 8
[2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,1,0,0] => [3,1,5,2,6,4] => 9
[2,1,4,5,3] => [1,1,0,0,1,1,0,1,0,0] => [1,1,1,0,0,1,1,0,1,0,0,0] => [3,1,5,6,2,4] => 8
[2,1,5,3,4] => [1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => [3,1,6,2,4,5] => 4
[2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => [3,1,6,2,4,5] => 4
[2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0] => [1,1,1,0,1,0,0,1,0,1,0,0] => [3,4,1,5,6,2] => 12
[2,3,1,5,4] => [1,1,0,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,1,0,0,0] => [3,4,1,6,2,5] => 7
[2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => [3,4,5,1,6,2] => 11
[2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [3,4,5,6,1,2] => 10
[2,3,5,1,4] => [1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [3,4,6,1,2,5] => 6
[2,3,5,4,1] => [1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [3,4,6,1,2,5] => 6
[2,4,1,3,5] => [1,1,0,1,1,0,0,0,1,0] => [1,1,1,0,1,1,0,0,0,1,0,0] => [3,5,1,2,6,4] => 8
[2,4,1,5,3] => [1,1,0,1,1,0,0,1,0,0] => [1,1,1,0,1,1,0,0,1,0,0,0] => [3,5,1,6,2,4] => 7
[2,4,3,1,5] => [1,1,0,1,1,0,0,0,1,0] => [1,1,1,0,1,1,0,0,0,1,0,0] => [3,5,1,2,6,4] => 8
[2,4,3,5,1] => [1,1,0,1,1,0,0,1,0,0] => [1,1,1,0,1,1,0,0,1,0,0,0] => [3,5,1,6,2,4] => 7
[2,4,5,1,3] => [1,1,0,1,1,0,1,0,0,0] => [1,1,1,0,1,1,0,1,0,0,0,0] => [3,5,6,1,2,4] => 6
[2,4,5,3,1] => [1,1,0,1,1,0,1,0,0,0] => [1,1,1,0,1,1,0,1,0,0,0,0] => [3,5,6,1,2,4] => 6
[2,5,1,3,4] => [1,1,0,1,1,1,0,0,0,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => [3,6,1,2,4,5] => 3
[2,5,1,4,3] => [1,1,0,1,1,1,0,0,0,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => [3,6,1,2,4,5] => 3
[2,5,3,1,4] => [1,1,0,1,1,1,0,0,0,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => [3,6,1,2,4,5] => 3
[2,5,3,4,1] => [1,1,0,1,1,1,0,0,0,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => [3,6,1,2,4,5] => 3
[2,5,4,1,3] => [1,1,0,1,1,1,0,0,0,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => [3,6,1,2,4,5] => 3
[2,5,4,3,1] => [1,1,0,1,1,1,0,0,0,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => [3,6,1,2,4,5] => 3
[3,1,2,4,5] => [1,1,1,0,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => [4,1,2,5,6,3] => 10
[3,1,2,5,4] => [1,1,1,0,0,0,1,1,0,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => [4,1,2,6,3,5] => 5
[3,1,4,2,5] => [1,1,1,0,0,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,1,0,0] => [4,1,5,2,6,3] => 9
[3,1,4,5,2] => [1,1,1,0,0,1,0,1,0,0] => [1,1,1,1,0,0,1,0,1,0,0,0] => [4,1,5,6,2,3] => 8
[3,1,5,2,4] => [1,1,1,0,0,1,1,0,0,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => [4,1,6,2,3,5] => 4
[3,1,5,4,2] => [1,1,1,0,0,1,1,0,0,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => [4,1,6,2,3,5] => 4
[3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => [4,1,2,5,6,3] => 10
[3,2,1,5,4] => [1,1,1,0,0,0,1,1,0,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => [4,1,2,6,3,5] => 5
[3,2,4,1,5] => [1,1,1,0,0,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,1,0,0] => [4,1,5,2,6,3] => 9
[3,2,4,5,1] => [1,1,1,0,0,1,0,1,0,0] => [1,1,1,1,0,0,1,0,1,0,0,0] => [4,1,5,6,2,3] => 8
[3,2,5,1,4] => [1,1,1,0,0,1,1,0,0,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => [4,1,6,2,3,5] => 4
[3,2,5,4,1] => [1,1,1,0,0,1,1,0,0,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => [4,1,6,2,3,5] => 4
[3,4,1,2,5] => [1,1,1,0,1,0,0,0,1,0] => [1,1,1,1,0,1,0,0,0,1,0,0] => [4,5,1,2,6,3] => 8
[3,4,1,5,2] => [1,1,1,0,1,0,0,1,0,0] => [1,1,1,1,0,1,0,0,1,0,0,0] => [4,5,1,6,2,3] => 7
[3,4,2,1,5] => [1,1,1,0,1,0,0,0,1,0] => [1,1,1,1,0,1,0,0,0,1,0,0] => [4,5,1,2,6,3] => 8
[3,4,2,5,1] => [1,1,1,0,1,0,0,1,0,0] => [1,1,1,1,0,1,0,0,1,0,0,0] => [4,5,1,6,2,3] => 7
[3,4,5,1,2] => [1,1,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => [4,5,6,1,2,3] => 6
[3,4,5,2,1] => [1,1,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => [4,5,6,1,2,3] => 6
[3,5,1,2,4] => [1,1,1,0,1,1,0,0,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => [4,6,1,2,3,5] => 3
[3,5,1,4,2] => [1,1,1,0,1,1,0,0,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => [4,6,1,2,3,5] => 3
>>> Load all 154 entries. <<<
[3,5,2,1,4] => [1,1,1,0,1,1,0,0,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => [4,6,1,2,3,5] => 3
[3,5,2,4,1] => [1,1,1,0,1,1,0,0,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => [4,6,1,2,3,5] => 3
[3,5,4,1,2] => [1,1,1,0,1,1,0,0,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => [4,6,1,2,3,5] => 3
[3,5,4,2,1] => [1,1,1,0,1,1,0,0,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => [4,6,1,2,3,5] => 3
[4,1,2,3,5] => [1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => [5,1,2,3,6,4] => 6
[4,1,2,5,3] => [1,1,1,1,0,0,0,1,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => [5,1,2,6,3,4] => 5
[4,1,3,2,5] => [1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => [5,1,2,3,6,4] => 6
[4,1,3,5,2] => [1,1,1,1,0,0,0,1,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => [5,1,2,6,3,4] => 5
[4,1,5,2,3] => [1,1,1,1,0,0,1,0,0,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => [5,1,6,2,3,4] => 4
[4,1,5,3,2] => [1,1,1,1,0,0,1,0,0,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => [5,1,6,2,3,4] => 4
[4,2,1,3,5] => [1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => [5,1,2,3,6,4] => 6
[4,2,1,5,3] => [1,1,1,1,0,0,0,1,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => [5,1,2,6,3,4] => 5
[4,2,3,1,5] => [1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => [5,1,2,3,6,4] => 6
[4,2,3,5,1] => [1,1,1,1,0,0,0,1,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => [5,1,2,6,3,4] => 5
[4,2,5,1,3] => [1,1,1,1,0,0,1,0,0,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => [5,1,6,2,3,4] => 4
[4,2,5,3,1] => [1,1,1,1,0,0,1,0,0,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => [5,1,6,2,3,4] => 4
[4,3,1,2,5] => [1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => [5,1,2,3,6,4] => 6
[4,3,1,5,2] => [1,1,1,1,0,0,0,1,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => [5,1,2,6,3,4] => 5
[4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => [5,1,2,3,6,4] => 6
[4,3,2,5,1] => [1,1,1,1,0,0,0,1,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => [5,1,2,6,3,4] => 5
[4,3,5,1,2] => [1,1,1,1,0,0,1,0,0,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => [5,1,6,2,3,4] => 4
[4,3,5,2,1] => [1,1,1,1,0,0,1,0,0,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => [5,1,6,2,3,4] => 4
[4,5,1,2,3] => [1,1,1,1,0,1,0,0,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => [5,6,1,2,3,4] => 3
[4,5,1,3,2] => [1,1,1,1,0,1,0,0,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => [5,6,1,2,3,4] => 3
[4,5,2,1,3] => [1,1,1,1,0,1,0,0,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => [5,6,1,2,3,4] => 3
[4,5,2,3,1] => [1,1,1,1,0,1,0,0,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => [5,6,1,2,3,4] => 3
[4,5,3,1,2] => [1,1,1,1,0,1,0,0,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => [5,6,1,2,3,4] => 3
[4,5,3,2,1] => [1,1,1,1,0,1,0,0,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => [5,6,1,2,3,4] => 3
[5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [6,1,2,3,4,5] => 1
[5,1,2,4,3] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [6,1,2,3,4,5] => 1
[5,1,3,2,4] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [6,1,2,3,4,5] => 1
[5,1,3,4,2] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [6,1,2,3,4,5] => 1
[5,1,4,2,3] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [6,1,2,3,4,5] => 1
[5,1,4,3,2] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [6,1,2,3,4,5] => 1
[5,2,1,3,4] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [6,1,2,3,4,5] => 1
[5,2,1,4,3] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [6,1,2,3,4,5] => 1
[5,2,3,1,4] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [6,1,2,3,4,5] => 1
[5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [6,1,2,3,4,5] => 1
[5,2,4,1,3] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [6,1,2,3,4,5] => 1
[5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [6,1,2,3,4,5] => 1
[5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [6,1,2,3,4,5] => 1
[5,3,1,4,2] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [6,1,2,3,4,5] => 1
[5,3,2,1,4] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [6,1,2,3,4,5] => 1
[5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [6,1,2,3,4,5] => 1
[5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [6,1,2,3,4,5] => 1
[5,3,4,2,1] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [6,1,2,3,4,5] => 1
[5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [6,1,2,3,4,5] => 1
[5,4,1,3,2] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [6,1,2,3,4,5] => 1
[5,4,2,1,3] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [6,1,2,3,4,5] => 1
[5,4,2,3,1] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [6,1,2,3,4,5] => 1
[5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [6,1,2,3,4,5] => 1
[5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [6,1,2,3,4,5] => 1
[] => [] => [1,0] => [1] => 0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The Denert index of a permutation.
It is defined as
$$ \begin{align*} den(\sigma) &= \#\{ 1\leq l < k \leq n : \sigma(k) < \sigma(l) \leq k \} \\ &+ \#\{ 1\leq l < k \leq n : \sigma(l) \leq k < \sigma(k) \} \\ &+ \#\{ 1\leq l < k \leq n : k < \sigma(k) < \sigma(l) \} \end{align*} $$
where $n$ is the size of $\sigma$. It was studied by Denert in [1], and it was shown by Foata and Zeilberger in [2] that the bistatistic $(exc,den)$ is Euler-Mahonian. Here, $exc$ is the number of weak exceedences, see St000155The number of exceedances (also excedences) of a permutation..
Map
left-to-right-maxima to Dyck path
Description
The left-to-right maxima of a permutation as a Dyck path.
Let $(c_1, \dots, c_k)$ be the rise composition Mp00102rise composition of the path. Then the corresponding left-to-right maxima are $c_1, c_1+c_2, \dots, c_1+\dots+c_k$.
Restricted to 321-avoiding permutations, this is the inverse of Mp00119to 321-avoiding permutation (Krattenthaler), restricted to 312-avoiding permutations, this is the inverse of Mp00031to 312-avoiding permutation.
Map
prime Dyck path
Description
Return the Dyck path obtained by adding an initial up and a final down step.
Map
to 321-avoiding permutation (Krattenthaler)
Description
Krattenthaler's bijection to 321-avoiding permutations.
Draw the path of semilength $n$ in an $n\times n$ square matrix, starting at the upper left corner, with right and down steps, and staying below the diagonal. Then the permutation matrix is obtained by placing ones into the cells corresponding to the peaks of the path and placing ones into the remaining columns from left to right, such that the row indices of the cells increase.