Identifier
Values
([2],3) => [2] => 1
([1,1],3) => [1,1] => 1
([3,1],3) => [2,1] => 2
([2,1,1],3) => [1,1,1] => 1
([4,2],3) => [2,2] => 1
([3,1,1],3) => [2,1,1] => 2
([2,2,1,1],3) => [1,1,1,1] => 1
([5,3,1],3) => [2,2,1] => 2
([4,2,1,1],3) => [2,1,1,1] => 2
([3,2,2,1,1],3) => [1,1,1,1,1] => 1
([6,4,2],3) => [2,2,2] => 1
([5,3,1,1],3) => [2,2,1,1] => 2
([4,2,2,1,1],3) => [2,1,1,1,1] => 2
([3,3,2,2,1,1],3) => [1,1,1,1,1,1] => 1
([2],4) => [2] => 1
([1,1],4) => [1,1] => 1
([3],4) => [3] => 1
([2,1],4) => [2,1] => 2
([1,1,1],4) => [1,1,1] => 1
([4,1],4) => [3,1] => 2
([2,2],4) => [2,2] => 1
([3,1,1],4) => [2,1,1] => 2
([2,1,1,1],4) => [1,1,1,1] => 1
([5,2],4) => [3,2] => 2
([4,1,1],4) => [3,1,1] => 2
([3,2,1],4) => [2,2,1] => 2
([3,1,1,1],4) => [2,1,1,1] => 2
([2,2,1,1,1],4) => [1,1,1,1,1] => 1
([6,3],4) => [3,3] => 1
([5,2,1],4) => [3,2,1] => 3
([4,1,1,1],4) => [3,1,1,1] => 2
([4,2,2],4) => [2,2,2] => 1
([3,3,1,1],4) => [2,2,1,1] => 2
([3,2,1,1,1],4) => [2,1,1,1,1] => 2
([2,2,2,1,1,1],4) => [1,1,1,1,1,1] => 1
([2],5) => [2] => 1
([1,1],5) => [1,1] => 1
([3],5) => [3] => 1
([2,1],5) => [2,1] => 2
([1,1,1],5) => [1,1,1] => 1
([4],5) => [4] => 1
([3,1],5) => [3,1] => 2
([2,2],5) => [2,2] => 1
([2,1,1],5) => [2,1,1] => 2
([1,1,1,1],5) => [1,1,1,1] => 1
([5,1],5) => [4,1] => 2
([3,2],5) => [3,2] => 2
([4,1,1],5) => [3,1,1] => 2
([2,2,1],5) => [2,2,1] => 2
([3,1,1,1],5) => [2,1,1,1] => 2
([2,1,1,1,1],5) => [1,1,1,1,1] => 1
([6,2],5) => [4,2] => 2
([5,1,1],5) => [4,1,1] => 2
([3,3],5) => [3,3] => 1
([4,2,1],5) => [3,2,1] => 3
([4,1,1,1],5) => [3,1,1,1] => 2
([2,2,2],5) => [2,2,2] => 1
([3,2,1,1],5) => [2,2,1,1] => 2
([3,1,1,1,1],5) => [2,1,1,1,1] => 2
([2,2,1,1,1,1],5) => [1,1,1,1,1,1] => 1
([2],6) => [2] => 1
([1,1],6) => [1,1] => 1
([3],6) => [3] => 1
([2,1],6) => [2,1] => 2
([1,1,1],6) => [1,1,1] => 1
([4],6) => [4] => 1
([3,1],6) => [3,1] => 2
([2,2],6) => [2,2] => 1
([2,1,1],6) => [2,1,1] => 2
([1,1,1,1],6) => [1,1,1,1] => 1
([5],6) => [5] => 1
([4,1],6) => [4,1] => 2
([3,2],6) => [3,2] => 2
([3,1,1],6) => [3,1,1] => 2
([2,2,1],6) => [2,2,1] => 2
([2,1,1,1],6) => [2,1,1,1] => 2
([1,1,1,1,1],6) => [1,1,1,1,1] => 1
([6,1],6) => [5,1] => 2
([4,2],6) => [4,2] => 2
([5,1,1],6) => [4,1,1] => 2
([3,3],6) => [3,3] => 1
([3,2,1],6) => [3,2,1] => 3
([4,1,1,1],6) => [3,1,1,1] => 2
([2,2,2],6) => [2,2,2] => 1
([2,2,1,1],6) => [2,2,1,1] => 2
([3,1,1,1,1],6) => [2,1,1,1,1] => 2
([2,1,1,1,1,1],6) => [1,1,1,1,1,1] => 1
([7,2],6) => [5,2] => 2
([6,1,1],6) => [5,1,1] => 2
([4,3],6) => [4,3] => 2
([5,2,1],6) => [4,2,1] => 3
([5,1,1,1],6) => [4,1,1,1] => 2
([3,3,1],6) => [3,3,1] => 2
([3,2,2],6) => [3,2,2] => 2
([4,2,1,1],6) => [3,2,1,1] => 3
([4,1,1,1,1],6) => [3,1,1,1,1] => 2
([2,2,2,1],6) => [2,2,2,1] => 2
([3,2,1,1,1],6) => [2,2,1,1,1] => 2
([3,1,1,1,1,1],6) => [2,1,1,1,1,1] => 2
([2,2,1,1,1,1,1],6) => [1,1,1,1,1,1,1] => 1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The number of distinct parts of the integer partition.
This statistic is also the number of removeable cells of the partition, and the number of valleys of the Dyck path tracing the shape of the partition.
Map
to bounded partition
Description
The (k-1)-bounded partition of a k-core.
Starting with a $k$-core, deleting all cells of hook length greater than or equal to $k$ yields a $(k-1)$-bounded partition [1, Theorem 7], see also [2, Section 1.2].