Identifier
Values
[] => 0
[1] => 1
[2] => 1
[1,1] => 2
[3] => 1
[2,1] => 1
[1,1,1] => 3
[4] => 1
[3,1] => 1
[2,2] => 2
[2,1,1] => 2
[1,1,1,1] => 4
[5] => 1
[4,1] => 1
[3,2] => 1
[3,1,1] => 2
[2,2,1] => 1
[2,1,1,1] => 3
[1,1,1,1,1] => 5
[6] => 1
[5,1] => 1
[4,2] => 1
[4,1,1] => 2
[3,3] => 2
[3,2,1] => 1
[3,1,1,1] => 3
[2,2,2] => 3
[2,2,1,1] => 2
[2,1,1,1,1] => 4
[1,1,1,1,1,1] => 6
[7] => 1
[6,1] => 1
[5,2] => 1
[5,1,1] => 2
[4,3] => 1
[4,2,1] => 1
[4,1,1,1] => 3
[3,3,1] => 1
[3,2,2] => 2
[3,2,1,1] => 2
[3,1,1,1,1] => 4
[2,2,2,1] => 1
[2,2,1,1,1] => 3
[2,1,1,1,1,1] => 5
[1,1,1,1,1,1,1] => 7
[8] => 1
[7,1] => 1
[6,2] => 1
[6,1,1] => 2
[5,3] => 1
[5,2,1] => 1
[5,1,1,1] => 3
[4,4] => 2
[4,3,1] => 1
[4,2,2] => 2
[4,2,1,1] => 2
[4,1,1,1,1] => 4
[3,3,2] => 1
[3,3,1,1] => 2
[3,2,2,1] => 1
[3,2,1,1,1] => 3
[3,1,1,1,1,1] => 5
[2,2,2,2] => 4
[2,2,2,1,1] => 2
[2,2,1,1,1,1] => 4
[2,1,1,1,1,1,1] => 6
[1,1,1,1,1,1,1,1] => 8
[9] => 1
[8,1] => 1
[7,2] => 1
[7,1,1] => 2
[6,3] => 1
[6,2,1] => 1
[6,1,1,1] => 3
[5,4] => 1
[5,3,1] => 1
[5,2,2] => 2
[5,2,1,1] => 2
[5,1,1,1,1] => 4
[4,4,1] => 1
[4,3,2] => 1
[4,3,1,1] => 2
[4,2,2,1] => 1
[4,2,1,1,1] => 3
[4,1,1,1,1,1] => 5
[3,3,3] => 3
[3,3,2,1] => 1
[3,3,1,1,1] => 3
[3,2,2,2] => 3
[3,2,2,1,1] => 2
[3,2,1,1,1,1] => 4
[3,1,1,1,1,1,1] => 6
[2,2,2,2,1] => 1
[2,2,2,1,1,1] => 3
[2,2,1,1,1,1,1] => 5
[2,1,1,1,1,1,1,1] => 7
[1,1,1,1,1,1,1,1,1] => 9
[10] => 1
[9,1] => 1
[8,2] => 1
[8,1,1] => 2
>>> Load all 288 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The multiplicity of the smallest part of a partition.
This counts the number of occurrences of the smallest part $spt(\lambda)$ of a partition $\lambda$.
The sum $spt(n) = \sum_{\lambda \vdash n} spt(\lambda)$ satisfies the congruences
\begin{align*}
spt(5n+4) &\equiv 0\quad \pmod{5}\\
spt(7n+5) &\equiv 0\quad \pmod{7}\\
spt(13n+6) &\equiv 0\quad \pmod{13},
\end{align*}
analogous to those of the counting function of partitions, see [1] and [2].
This counts the number of occurrences of the smallest part $spt(\lambda)$ of a partition $\lambda$.
The sum $spt(n) = \sum_{\lambda \vdash n} spt(\lambda)$ satisfies the congruences
\begin{align*}
spt(5n+4) &\equiv 0\quad \pmod{5}\\
spt(7n+5) &\equiv 0\quad \pmod{7}\\
spt(13n+6) &\equiv 0\quad \pmod{13},
\end{align*}
analogous to those of the counting function of partitions, see [1] and [2].
References
[1] Andrews, G. E. The number of smallest parts in the partitions of $n$ MathSciNet:2456627
[2] Chen, W. Y. C., Ji, K. Q., Zang, W. J. T. The spt-Crank for Ordinary Partitions arXiv:1308.3012
[2] Chen, W. Y. C., Ji, K. Q., Zang, W. J. T. The spt-Crank for Ordinary Partitions arXiv:1308.3012
Code
def statistic(L):
if not L:
return 0
return list(L).count(L[-1])
Created
Sep 04, 2013 at 14:19 by Christian Stump
Updated
Mar 31, 2019 at 21:51 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!