Identifier
Values
[] => [] => [1,0] => [.,.] => 0
[[]] => [1,0] => [1,1,0,0] => [.,[.,.]] => 1
[[],[]] => [1,0,1,0] => [1,1,0,1,0,0] => [.,[[.,.],.]] => 2
[[[]]] => [1,1,0,0] => [1,1,1,0,0,0] => [.,[.,[.,.]]] => 3
[[],[],[]] => [1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => [.,[[[.,.],.],.]] => 3
[[],[[]]] => [1,0,1,1,0,0] => [1,1,0,1,1,0,0,0] => [.,[[.,.],[.,.]]] => 4
[[[]],[]] => [1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [.,[[.,[.,.]],.]] => 4
[[[],[]]] => [1,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => [.,[.,[[.,.],.]]] => 5
[[[[]]]] => [1,1,1,0,0,0] => [1,1,1,1,0,0,0,0] => [.,[.,[.,[.,.]]]] => 6
[[],[],[],[]] => [1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [.,[[[[.,.],.],.],.]] => 4
[[],[],[[]]] => [1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => [.,[[[.,.],.],[.,.]]] => 5
[[],[[]],[]] => [1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => [.,[[[.,.],[.,.]],.]] => 5
[[],[[],[]]] => [1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => [.,[[.,.],[[.,.],.]]] => 6
[[],[[[]]]] => [1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => [.,[[.,.],[.,[.,.]]]] => 7
[[[]],[],[]] => [1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [.,[[[.,[.,.]],.],.]] => 5
[[[]],[[]]] => [1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0] => [.,[[.,[.,.]],[.,.]]] => 6
[[[],[]],[]] => [1,1,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => [.,[[.,[[.,.],.]],.]] => 6
[[[[]]],[]] => [1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [.,[[.,[.,[.,.]]],.]] => 7
[[[],[],[]]] => [1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => [.,[.,[[[.,.],.],.]]] => 7
[[[],[[]]]] => [1,1,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => [.,[.,[[.,.],[.,.]]]] => 8
[[[[]],[]]] => [1,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [.,[.,[[.,[.,.]],.]]] => 8
[[[[],[]]]] => [1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [.,[.,[.,[[.,.],.]]]] => 9
[[[[[]]]]] => [1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [.,[.,[.,[.,[.,.]]]]] => 10
[[],[],[],[],[]] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => [.,[[[[[.,.],.],.],.],.]] => 5
[[],[],[],[[]]] => [1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => [.,[[[[.,.],.],.],[.,.]]] => 6
[[],[],[[]],[]] => [1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,0] => [.,[[[[.,.],.],[.,.]],.]] => 6
[[],[],[[],[]]] => [1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,1,1,0,1,0,0,0] => [.,[[[.,.],.],[[.,.],.]]] => 7
[[],[],[[[]]]] => [1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => [.,[[[.,.],.],[.,[.,.]]]] => 8
[[],[[]],[],[]] => [1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,0] => [.,[[[[.,.],[.,.]],.],.]] => 6
[[],[[]],[[]]] => [1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,1,1,0,0,0] => [.,[[[.,.],[.,.]],[.,.]]] => 7
[[],[[],[]],[]] => [1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,1,0,0,1,0,0] => [.,[[[.,.],[[.,.],.]],.]] => 7
[[],[[[]]],[]] => [1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,0] => [.,[[[.,.],[.,[.,.]]],.]] => 8
[[],[[],[],[]]] => [1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => [.,[[.,.],[[[.,.],.],.]]] => 8
[[],[[],[[]]]] => [1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,1,0,0,0,0] => [.,[[.,.],[[.,.],[.,.]]]] => 9
[[],[[[]],[]]] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,1,0,0,1,0,0,0] => [.,[[.,.],[[.,[.,.]],.]]] => 9
[[],[[[],[]]]] => [1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,1,1,0,1,0,0,0,0] => [.,[[.,.],[.,[[.,.],.]]]] => 10
[[],[[[[]]]]] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [.,[[.,.],[.,[.,[.,.]]]]] => 11
[[[]],[],[],[]] => [1,1,0,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => [.,[[[[.,[.,.]],.],.],.]] => 6
[[[]],[],[[]]] => [1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,1,0,0,0] => [.,[[[.,[.,.]],.],[.,.]]] => 7
[[[]],[[]],[]] => [1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,1,0,0] => [.,[[[.,[.,.]],[.,.]],.]] => 7
[[[]],[[],[]]] => [1,1,0,0,1,1,0,1,0,0] => [1,1,1,0,0,1,1,0,1,0,0,0] => [.,[[.,[.,.]],[[.,.],.]]] => 8
[[[]],[[[]]]] => [1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => [.,[[.,[.,.]],[.,[.,.]]]] => 9
[[[],[]],[],[]] => [1,1,0,1,0,0,1,0,1,0] => [1,1,1,0,1,0,0,1,0,1,0,0] => [.,[[[.,[[.,.],.]],.],.]] => 7
[[[[]]],[],[]] => [1,1,1,0,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => [.,[[[.,[.,[.,.]]],.],.]] => 8
[[[],[]],[[]]] => [1,1,0,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,1,0,0,0] => [.,[[.,[[.,.],.]],[.,.]]] => 8
[[[[]]],[[]]] => [1,1,1,0,0,0,1,1,0,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => [.,[[.,[.,[.,.]]],[.,.]]] => 9
[[[],[],[]],[]] => [1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => [.,[[.,[[[.,.],.],.]],.]] => 8
[[[],[[]]],[]] => [1,1,0,1,1,0,0,0,1,0] => [1,1,1,0,1,1,0,0,0,1,0,0] => [.,[[.,[[.,.],[.,.]]],.]] => 9
[[[[]],[]],[]] => [1,1,1,0,0,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,1,0,0] => [.,[[.,[[.,[.,.]],.]],.]] => 9
[[[[],[]]],[]] => [1,1,1,0,1,0,0,0,1,0] => [1,1,1,1,0,1,0,0,0,1,0,0] => [.,[[.,[.,[[.,.],.]]],.]] => 10
[[[[[]]]],[]] => [1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => [.,[[.,[.,[.,[.,.]]]],.]] => 11
[[[],[],[],[]]] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [.,[.,[[[[.,.],.],.],.]]] => 9
[[[],[],[[]]]] => [1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [.,[.,[[[.,.],.],[.,.]]]] => 10
[[[],[[]],[]]] => [1,1,0,1,1,0,0,1,0,0] => [1,1,1,0,1,1,0,0,1,0,0,0] => [.,[.,[[[.,.],[.,.]],.]]] => 10
[[[],[[],[]]]] => [1,1,0,1,1,0,1,0,0,0] => [1,1,1,0,1,1,0,1,0,0,0,0] => [.,[.,[[.,.],[[.,.],.]]]] => 11
[[[],[[[]]]]] => [1,1,0,1,1,1,0,0,0,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => [.,[.,[[.,.],[.,[.,.]]]]] => 12
[[[[]],[],[]]] => [1,1,1,0,0,1,0,1,0,0] => [1,1,1,1,0,0,1,0,1,0,0,0] => [.,[.,[[[.,[.,.]],.],.]]] => 10
[[[[]],[[]]]] => [1,1,1,0,0,1,1,0,0,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => [.,[.,[[.,[.,.]],[.,.]]]] => 11
[[[[],[]],[]]] => [1,1,1,0,1,0,0,1,0,0] => [1,1,1,1,0,1,0,0,1,0,0,0] => [.,[.,[[.,[[.,.],.]],.]]] => 11
[[[[[]]],[]]] => [1,1,1,1,0,0,0,1,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => [.,[.,[[.,[.,[.,.]]],.]]] => 12
[[[[],[],[]]]] => [1,1,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => [.,[.,[.,[[[.,.],.],.]]]] => 12
[[[[],[[]]]]] => [1,1,1,0,1,1,0,0,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => [.,[.,[.,[[.,.],[.,.]]]]] => 13
[[[[[]],[]]]] => [1,1,1,1,0,0,1,0,0,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => [.,[.,[.,[[.,[.,.]],.]]]] => 13
[[[[[],[]]]]] => [1,1,1,1,0,1,0,0,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => [.,[.,[.,[.,[[.,.],.]]]]] => 14
[[[[[[]]]]]] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [.,[.,[.,[.,[.,[.,.]]]]]] => 15
[[],[],[],[],[],[]] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,0] => [.,[[[[[[.,.],.],.],.],.],.]] => 6
[[],[],[],[],[[]]] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,1,1,0,0,0] => [.,[[[[[.,.],.],.],.],[.,.]]] => 7
[[],[],[],[[]],[]] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,1,1,0,0,1,0,0] => [.,[[[[[.,.],.],.],[.,.]],.]] => 7
[[],[],[[]],[],[]] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,1,0,0] => [.,[[[[[.,.],.],[.,.]],.],.]] => 7
[[],[],[[]],[[]]] => [1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,1,1,0,0,0] => [.,[[[[.,.],.],[.,.]],[.,.]]] => 8
[[],[[]],[],[],[]] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,1,0,0] => [.,[[[[[.,.],[.,.]],.],.],.]] => 7
[[],[[]],[],[[]]] => [1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,0,1,1,0,0,1,0,1,1,0,0,0] => [.,[[[[.,.],[.,.]],.],[.,.]]] => 8
[[],[[]],[[]],[]] => [1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,1,0,0,1,0,0] => [.,[[[[.,.],[.,.]],[.,.]],.]] => 8
[[],[[]],[[],[]]] => [1,0,1,1,0,0,1,1,0,1,0,0] => [1,1,0,1,1,0,0,1,1,0,1,0,0,0] => [.,[[[.,.],[.,.]],[[.,.],.]]] => 9
[[],[[]],[[[]]]] => [1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,0,1,1,0,0,1,1,1,0,0,0,0] => [.,[[[.,.],[.,.]],[.,[.,.]]]] => 10
[[],[[],[]],[],[]] => [1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,0,1,1,0,1,0,0,1,0,1,0,0] => [.,[[[[.,.],[[.,.],.]],.],.]] => 8
[[],[[],[]],[[]]] => [1,0,1,1,0,1,0,0,1,1,0,0] => [1,1,0,1,1,0,1,0,0,1,1,0,0,0] => [.,[[[.,.],[[.,.],.]],[.,.]]] => 9
[[[]],[],[],[],[]] => [1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,1,0,0] => [.,[[[[[.,[.,.]],.],.],.],.]] => 7
[[[]],[],[],[[]]] => [1,1,0,0,1,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,0,1,1,0,0,0] => [.,[[[[.,[.,.]],.],.],[.,.]]] => 8
[[[]],[[]],[],[]] => [1,1,0,0,1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,1,0,0,1,0,1,0,0] => [.,[[[[.,[.,.]],[.,.]],.],.]] => 8
[[[]],[[]],[[]]] => [1,1,0,0,1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,1,1,0,0,0] => [.,[[[.,[.,.]],[.,.]],[.,.]]] => 9
[[[],[]],[],[],[]] => [1,1,0,1,0,0,1,0,1,0,1,0] => [1,1,1,0,1,0,0,1,0,1,0,1,0,0] => [.,[[[[.,[[.,.],.]],.],.],.]] => 8
[[[[]]],[],[],[]] => [1,1,1,0,0,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,1,0,0] => [.,[[[[.,[.,[.,.]]],.],.],.]] => 9
[[[],[]],[],[[]]] => [1,1,0,1,0,0,1,0,1,1,0,0] => [1,1,1,0,1,0,0,1,0,1,1,0,0,0] => [.,[[[.,[[.,.],.]],.],[.,.]]] => 9
[[[],[],[]],[],[]] => [1,1,0,1,0,1,0,0,1,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,1,0,0] => [.,[[[.,[[[.,.],.],.]],.],.]] => 9
[[[[]],[]],[],[]] => [1,1,1,0,0,1,0,0,1,0,1,0] => [1,1,1,1,0,0,1,0,0,1,0,1,0,0] => [.,[[[.,[[.,[.,.]],.]],.],.]] => 10
[[[],[],[]],[[]]] => [1,1,0,1,0,1,0,0,1,1,0,0] => [1,1,1,0,1,0,1,0,0,1,1,0,0,0] => [.,[[.,[[[.,.],.],.]],[.,.]]] => 10
[[[],[[]]],[[]]] => [1,1,0,1,1,0,0,0,1,1,0,0] => [1,1,1,0,1,1,0,0,0,1,1,0,0,0] => [.,[[.,[[.,.],[.,.]]],[.,.]]] => 11
[[[],[],[],[]],[]] => [1,1,0,1,0,1,0,1,0,0,1,0] => [1,1,1,0,1,0,1,0,1,0,0,1,0,0] => [.,[[.,[[[[.,.],.],.],.]],.]] => 10
[[],[],[],[],[],[],[]] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0] => [.,[[[[[[[.,.],.],.],.],.],.],.]] => 7
[[],[],[[]],[],[],[]] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,1,0,1,0,0] => [.,[[[[[[.,.],.],[.,.]],.],.],.]] => 8
[[],[],[[]],[[],[]]] => [1,0,1,0,1,1,0,0,1,1,0,1,0,0] => [1,1,0,1,0,1,1,0,0,1,1,0,1,0,0,0] => [.,[[[[.,.],.],[.,.]],[[.,.],.]]] => 10
[[],[[]],[],[],[],[]] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,1,0,1,0,0] => [.,[[[[[[.,.],[.,.]],.],.],.],.]] => 8
[[],[[]],[],[[],[]]] => [1,0,1,1,0,0,1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,0,1,0,1,1,0,1,0,0,0] => [.,[[[[.,.],[.,.]],.],[[.,.],.]]] => 10
[[],[[]],[[]],[[]]] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,1,1,0,0,1,1,0,0,0] => [.,[[[[.,.],[.,.]],[.,.]],[.,.]]] => 10
[[],[[]],[[],[],[]]] => [1,0,1,1,0,0,1,1,0,1,0,1,0,0] => [1,1,0,1,1,0,0,1,1,0,1,0,1,0,0,0] => [.,[[[.,.],[.,.]],[[[.,.],.],.]]] => 11
[[],[[]],[[],[[]]]] => [1,0,1,1,0,0,1,1,0,1,1,0,0,0] => [1,1,0,1,1,0,0,1,1,0,1,1,0,0,0,0] => [.,[[[.,.],[.,.]],[[.,.],[.,.]]]] => 12
[[],[[]],[[[]],[]]] => [1,0,1,1,0,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,1,1,1,0,0,1,0,0,0] => [.,[[[.,.],[.,.]],[[.,[.,.]],.]]] => 12
[[],[[]],[[[],[]]]] => [1,0,1,1,0,0,1,1,1,0,1,0,0,0] => [1,1,0,1,1,0,0,1,1,1,0,1,0,0,0,0] => [.,[[[.,.],[.,.]],[.,[[.,.],.]]]] => 13
[[],[[]],[[[[]]]]] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0] => [1,1,0,1,1,0,0,1,1,1,1,0,0,0,0,0] => [.,[[[.,.],[.,.]],[.,[.,[.,.]]]]] => 14
[[[]],[],[],[],[],[]] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0] => [.,[[[[[[.,[.,.]],.],.],.],.],.]] => 8
>>> Load all 117 entries. <<<
[[[]],[[]],[[]],[]] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,1,1,0,0,1,0,0] => [.,[[[[.,[.,.]],[.,.]],[.,.]],.]] => 10
[[[]],[[[]],[]],[]] => [1,1,0,0,1,1,1,0,0,1,0,0,1,0] => [1,1,1,0,0,1,1,1,0,0,1,0,0,1,0,0] => [.,[[[.,[.,.]],[[.,[.,.]],.]],.]] => 12
[[[],[]],[],[],[],[]] => [1,1,0,1,0,0,1,0,1,0,1,0,1,0] => [1,1,1,0,1,0,0,1,0,1,0,1,0,1,0,0] => [.,[[[[[.,[[.,.],.]],.],.],.],.]] => 9
[[[[]]],[],[],[],[]] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,1,0,1,0,0] => [.,[[[[[.,[.,[.,.]]],.],.],.],.]] => 10
[[[],[],[]],[],[],[]] => [1,1,0,1,0,1,0,0,1,0,1,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,1,0,1,0,0] => [.,[[[[.,[[[.,.],.],.]],.],.],.]] => 10
[[[],[[]]],[],[[]]] => [1,1,0,1,1,0,0,0,1,0,1,1,0,0] => [1,1,1,0,1,1,0,0,0,1,0,1,1,0,0,0] => [.,[[[.,[[.,.],[.,.]]],.],[.,.]]] => 12
[[[[]],[]],[[]],[]] => [1,1,1,0,0,1,0,0,1,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,1,1,0,0,1,0,0] => [.,[[[.,[[.,[.,.]],.]],[.,.]],.]] => 12
[[[],[[]],[[]]],[]] => [1,1,0,1,1,0,0,1,1,0,0,0,1,0] => [1,1,1,0,1,1,0,0,1,1,0,0,0,1,0,0] => [.,[[.,[[[.,.],[.,.]],[.,.]]],.]] => 14
[[[[]],[[]],[]],[]] => [1,1,1,0,0,1,1,0,0,1,0,0,1,0] => [1,1,1,1,0,0,1,1,0,0,1,0,0,1,0,0] => [.,[[.,[[[.,[.,.]],[.,.]],.]],.]] => 14
[[[[],[[]]],[]],[]] => [1,1,1,0,1,1,0,0,0,1,0,0,1,0] => [1,1,1,1,0,1,1,0,0,0,1,0,0,1,0,0] => [.,[[.,[[.,[[.,.],[.,.]]],.]],.]] => 16
[[[[[]],[]],[]],[]] => [1,1,1,1,0,0,1,0,0,1,0,0,1,0] => [1,1,1,1,1,0,0,1,0,0,1,0,0,1,0,0] => [.,[[.,[[.,[[.,[.,.]],.]],.]],.]] => 16
[[],[],[],[],[],[],[],[]] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0] => [.,[[[[[[[[.,.],.],.],.],.],.],.],.]] => 8
[[],[[]],[],[],[],[],[]] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0] => [.,[[[[[[[.,.],[.,.]],.],.],.],.],.]] => 9
[[[]],[],[],[],[],[],[]] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,0] => [.,[[[[[[[.,[.,.]],.],.],.],.],.],.]] => 9
[[[]],[[]],[[],[[]]]] => [1,1,0,0,1,1,0,0,1,1,0,1,1,0,0,0] => [1,1,1,0,0,1,1,0,0,1,1,0,1,1,0,0,0,0] => [.,[[[.,[.,.]],[.,.]],[[.,.],[.,.]]]] => 14
[[[],[]],[],[],[],[],[]] => [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0,0] => [.,[[[[[[.,[[.,.],.]],.],.],.],.],.]] => 10
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The sum of the sizes of the right subtrees of a binary tree.
This statistic corresponds to St000012The area of a Dyck path. under the Tamari Dyck path-binary tree bijection, and to St000018The number of inversions of a permutation. of the $312$-avoiding permutation corresponding to the binary tree.
It is also the sum of all heights $j$ of the coordinates $(i,j)$ of the Dyck path corresponding to the binary tree.
Map
to binary tree: left tree, up step, right tree, down step
Description
Return the binary tree corresponding to the Dyck path under the transformation left tree - up step - right tree - down step.
A Dyck path $D$ of semilength $n$ with $n > 1$ may be uniquely decomposed into $L 1 R 0$ for Dyck paths $L,R$ of respective semilengths $n_1,n_2$ with $n_1+n_2 = n-1$.
This map sends $D$ to the binary tree $T$ consisting of a root node with a left child according to $L$ and a right child according to $R$ and then recursively proceeds.
The base case of the unique Dyck path of semilength $1$ is sent to a single node.
This map may also be described as the unique map sending the Tamari orders on Dyck paths to the Tamari order on binary trees.
Map
prime Dyck path
Description
Return the Dyck path obtained by adding an initial up and a final down step.
Map
to Dyck path
Description
Return the Dyck path of the corresponding ordered tree induced by the recurrence of the Catalan numbers, see wikipedia:Catalan_number.
This sends the maximal height of the Dyck path to the depth of the tree.