Identifier
-
Mp00014:
Binary trees
—to 132-avoiding permutation⟶
Permutations
Mp00223: Permutations —runsort⟶ Permutations
Mp00072: Permutations —binary search tree: left to right⟶ Binary trees
St000161: Binary trees ⟶ ℤ
Values
[.,.] => [1] => [1] => [.,.] => 0
[.,[.,.]] => [2,1] => [1,2] => [.,[.,.]] => 1
[[.,.],.] => [1,2] => [1,2] => [.,[.,.]] => 1
[.,[.,[.,.]]] => [3,2,1] => [1,2,3] => [.,[.,[.,.]]] => 3
[.,[[.,.],.]] => [2,3,1] => [1,2,3] => [.,[.,[.,.]]] => 3
[[.,.],[.,.]] => [3,1,2] => [1,2,3] => [.,[.,[.,.]]] => 3
[[.,[.,.]],.] => [2,1,3] => [1,3,2] => [.,[[.,.],.]] => 2
[[[.,.],.],.] => [1,2,3] => [1,2,3] => [.,[.,[.,.]]] => 3
[.,[.,[.,[.,.]]]] => [4,3,2,1] => [1,2,3,4] => [.,[.,[.,[.,.]]]] => 6
[.,[.,[[.,.],.]]] => [3,4,2,1] => [1,2,3,4] => [.,[.,[.,[.,.]]]] => 6
[.,[[.,.],[.,.]]] => [4,2,3,1] => [1,2,3,4] => [.,[.,[.,[.,.]]]] => 6
[.,[[.,[.,.]],.]] => [3,2,4,1] => [1,2,4,3] => [.,[.,[[.,.],.]]] => 5
[.,[[[.,.],.],.]] => [2,3,4,1] => [1,2,3,4] => [.,[.,[.,[.,.]]]] => 6
[[.,.],[.,[.,.]]] => [4,3,1,2] => [1,2,3,4] => [.,[.,[.,[.,.]]]] => 6
[[.,.],[[.,.],.]] => [3,4,1,2] => [1,2,3,4] => [.,[.,[.,[.,.]]]] => 6
[[.,[.,.]],[.,.]] => [4,2,1,3] => [1,3,2,4] => [.,[[.,.],[.,.]]] => 4
[[[.,.],.],[.,.]] => [4,1,2,3] => [1,2,3,4] => [.,[.,[.,[.,.]]]] => 6
[[.,[.,[.,.]]],.] => [3,2,1,4] => [1,4,2,3] => [.,[[.,[.,.]],.]] => 4
[[.,[[.,.],.]],.] => [2,3,1,4] => [1,4,2,3] => [.,[[.,[.,.]],.]] => 4
[[[.,.],[.,.]],.] => [3,1,2,4] => [1,2,4,3] => [.,[.,[[.,.],.]]] => 5
[[[.,[.,.]],.],.] => [2,1,3,4] => [1,3,4,2] => [.,[[.,.],[.,.]]] => 4
[[[[.,.],.],.],.] => [1,2,3,4] => [1,2,3,4] => [.,[.,[.,[.,.]]]] => 6
[.,[.,[.,[.,[.,.]]]]] => [5,4,3,2,1] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]] => 10
[.,[.,[.,[[.,.],.]]]] => [4,5,3,2,1] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]] => 10
[.,[.,[[.,.],[.,.]]]] => [5,3,4,2,1] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]] => 10
[.,[.,[[.,[.,.]],.]]] => [4,3,5,2,1] => [1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]] => 9
[.,[.,[[[.,.],.],.]]] => [3,4,5,2,1] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]] => 10
[.,[[.,.],[.,[.,.]]]] => [5,4,2,3,1] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]] => 10
[.,[[.,.],[[.,.],.]]] => [4,5,2,3,1] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]] => 10
[.,[[.,[.,.]],[.,.]]] => [5,3,2,4,1] => [1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]] => 8
[.,[[[.,.],.],[.,.]]] => [5,2,3,4,1] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]] => 10
[.,[[.,[.,[.,.]]],.]] => [4,3,2,5,1] => [1,2,5,3,4] => [.,[.,[[.,[.,.]],.]]] => 8
[.,[[.,[[.,.],.]],.]] => [3,4,2,5,1] => [1,2,5,3,4] => [.,[.,[[.,[.,.]],.]]] => 8
[.,[[[.,.],[.,.]],.]] => [4,2,3,5,1] => [1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]] => 9
[.,[[[.,[.,.]],.],.]] => [3,2,4,5,1] => [1,2,4,5,3] => [.,[.,[[.,.],[.,.]]]] => 8
[.,[[[[.,.],.],.],.]] => [2,3,4,5,1] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]] => 10
[[.,.],[.,[.,[.,.]]]] => [5,4,3,1,2] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]] => 10
[[.,.],[.,[[.,.],.]]] => [4,5,3,1,2] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]] => 10
[[.,.],[[.,.],[.,.]]] => [5,3,4,1,2] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]] => 10
[[.,.],[[.,[.,.]],.]] => [4,3,5,1,2] => [1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]] => 9
[[.,.],[[[.,.],.],.]] => [3,4,5,1,2] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]] => 10
[[.,[.,.]],[.,[.,.]]] => [5,4,2,1,3] => [1,3,2,4,5] => [.,[[.,.],[.,[.,.]]]] => 7
[[.,[.,.]],[[.,.],.]] => [4,5,2,1,3] => [1,3,2,4,5] => [.,[[.,.],[.,[.,.]]]] => 7
[[[.,.],.],[.,[.,.]]] => [5,4,1,2,3] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]] => 10
[[[.,.],.],[[.,.],.]] => [4,5,1,2,3] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]] => 10
[[.,[.,[.,.]]],[.,.]] => [5,3,2,1,4] => [1,4,2,3,5] => [.,[[.,[.,.]],[.,.]]] => 6
[[.,[[.,.],.]],[.,.]] => [5,2,3,1,4] => [1,4,2,3,5] => [.,[[.,[.,.]],[.,.]]] => 6
[[[.,.],[.,.]],[.,.]] => [5,3,1,2,4] => [1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]] => 8
[[[.,[.,.]],.],[.,.]] => [5,2,1,3,4] => [1,3,4,2,5] => [.,[[.,.],[.,[.,.]]]] => 7
[[[[.,.],.],.],[.,.]] => [5,1,2,3,4] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]] => 10
[[.,[.,[.,[.,.]]]],.] => [4,3,2,1,5] => [1,5,2,3,4] => [.,[[.,[.,[.,.]]],.]] => 7
[[.,[.,[[.,.],.]]],.] => [3,4,2,1,5] => [1,5,2,3,4] => [.,[[.,[.,[.,.]]],.]] => 7
[[.,[[.,.],[.,.]]],.] => [4,2,3,1,5] => [1,5,2,3,4] => [.,[[.,[.,[.,.]]],.]] => 7
[[.,[[.,[.,.]],.]],.] => [3,2,4,1,5] => [1,5,2,4,3] => [.,[[.,[[.,.],.]],.]] => 6
[[.,[[[.,.],.],.]],.] => [2,3,4,1,5] => [1,5,2,3,4] => [.,[[.,[.,[.,.]]],.]] => 7
[[[.,.],[.,[.,.]]],.] => [4,3,1,2,5] => [1,2,5,3,4] => [.,[.,[[.,[.,.]],.]]] => 8
[[[.,.],[[.,.],.]],.] => [3,4,1,2,5] => [1,2,5,3,4] => [.,[.,[[.,[.,.]],.]]] => 8
[[[.,[.,.]],[.,.]],.] => [4,2,1,3,5] => [1,3,5,2,4] => [.,[[.,.],[[.,.],.]]] => 6
[[[[.,.],.],[.,.]],.] => [4,1,2,3,5] => [1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]] => 9
[[[.,[.,[.,.]]],.],.] => [3,2,1,4,5] => [1,4,5,2,3] => [.,[[.,[.,.]],[.,.]]] => 6
[[[.,[[.,.],.]],.],.] => [2,3,1,4,5] => [1,4,5,2,3] => [.,[[.,[.,.]],[.,.]]] => 6
[[[[.,.],[.,.]],.],.] => [3,1,2,4,5] => [1,2,4,5,3] => [.,[.,[[.,.],[.,.]]]] => 8
[[[[.,[.,.]],.],.],.] => [2,1,3,4,5] => [1,3,4,5,2] => [.,[[.,.],[.,[.,.]]]] => 7
[[[[[.,.],.],.],.],.] => [1,2,3,4,5] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]] => 10
[.,[.,[.,[.,[.,[.,.]]]]]] => [6,5,4,3,2,1] => [1,2,3,4,5,6] => [.,[.,[.,[.,[.,[.,.]]]]]] => 15
[.,[.,[.,[.,[[.,.],.]]]]] => [5,6,4,3,2,1] => [1,2,3,4,5,6] => [.,[.,[.,[.,[.,[.,.]]]]]] => 15
[.,[.,[.,[[.,.],[.,.]]]]] => [6,4,5,3,2,1] => [1,2,3,4,5,6] => [.,[.,[.,[.,[.,[.,.]]]]]] => 15
[.,[.,[.,[[.,[.,.]],.]]]] => [5,4,6,3,2,1] => [1,2,3,4,6,5] => [.,[.,[.,[.,[[.,.],.]]]]] => 14
[.,[.,[.,[[[.,.],.],.]]]] => [4,5,6,3,2,1] => [1,2,3,4,5,6] => [.,[.,[.,[.,[.,[.,.]]]]]] => 15
[.,[.,[[.,.],[.,[.,.]]]]] => [6,5,3,4,2,1] => [1,2,3,4,5,6] => [.,[.,[.,[.,[.,[.,.]]]]]] => 15
[.,[.,[[.,.],[[.,.],.]]]] => [5,6,3,4,2,1] => [1,2,3,4,5,6] => [.,[.,[.,[.,[.,[.,.]]]]]] => 15
[.,[.,[[.,[.,.]],[.,.]]]] => [6,4,3,5,2,1] => [1,2,3,5,4,6] => [.,[.,[.,[[.,.],[.,.]]]]] => 13
[.,[.,[[[.,.],.],[.,.]]]] => [6,3,4,5,2,1] => [1,2,3,4,5,6] => [.,[.,[.,[.,[.,[.,.]]]]]] => 15
[.,[.,[[.,[.,[.,.]]],.]]] => [5,4,3,6,2,1] => [1,2,3,6,4,5] => [.,[.,[.,[[.,[.,.]],.]]]] => 13
[.,[.,[[.,[[.,.],.]],.]]] => [4,5,3,6,2,1] => [1,2,3,6,4,5] => [.,[.,[.,[[.,[.,.]],.]]]] => 13
[.,[.,[[[.,.],[.,.]],.]]] => [5,3,4,6,2,1] => [1,2,3,4,6,5] => [.,[.,[.,[.,[[.,.],.]]]]] => 14
[.,[.,[[[.,[.,.]],.],.]]] => [4,3,5,6,2,1] => [1,2,3,5,6,4] => [.,[.,[.,[[.,.],[.,.]]]]] => 13
[.,[.,[[[[.,.],.],.],.]]] => [3,4,5,6,2,1] => [1,2,3,4,5,6] => [.,[.,[.,[.,[.,[.,.]]]]]] => 15
[.,[[.,.],[.,[.,[.,.]]]]] => [6,5,4,2,3,1] => [1,2,3,4,5,6] => [.,[.,[.,[.,[.,[.,.]]]]]] => 15
[.,[[.,.],[.,[[.,.],.]]]] => [5,6,4,2,3,1] => [1,2,3,4,5,6] => [.,[.,[.,[.,[.,[.,.]]]]]] => 15
[.,[[.,.],[[.,.],[.,.]]]] => [6,4,5,2,3,1] => [1,2,3,4,5,6] => [.,[.,[.,[.,[.,[.,.]]]]]] => 15
[.,[[.,.],[[.,[.,.]],.]]] => [5,4,6,2,3,1] => [1,2,3,4,6,5] => [.,[.,[.,[.,[[.,.],.]]]]] => 14
[.,[[.,.],[[[.,.],.],.]]] => [4,5,6,2,3,1] => [1,2,3,4,5,6] => [.,[.,[.,[.,[.,[.,.]]]]]] => 15
[.,[[.,[.,.]],[.,[.,.]]]] => [6,5,3,2,4,1] => [1,2,4,3,5,6] => [.,[.,[[.,.],[.,[.,.]]]]] => 12
[.,[[.,[.,.]],[[.,.],.]]] => [5,6,3,2,4,1] => [1,2,4,3,5,6] => [.,[.,[[.,.],[.,[.,.]]]]] => 12
[.,[[[.,.],.],[.,[.,.]]]] => [6,5,2,3,4,1] => [1,2,3,4,5,6] => [.,[.,[.,[.,[.,[.,.]]]]]] => 15
[.,[[[.,.],.],[[.,.],.]]] => [5,6,2,3,4,1] => [1,2,3,4,5,6] => [.,[.,[.,[.,[.,[.,.]]]]]] => 15
[.,[[.,[.,[.,.]]],[.,.]]] => [6,4,3,2,5,1] => [1,2,5,3,4,6] => [.,[.,[[.,[.,.]],[.,.]]]] => 11
[.,[[.,[[.,.],.]],[.,.]]] => [6,3,4,2,5,1] => [1,2,5,3,4,6] => [.,[.,[[.,[.,.]],[.,.]]]] => 11
[.,[[[.,.],[.,.]],[.,.]]] => [6,4,2,3,5,1] => [1,2,3,5,4,6] => [.,[.,[.,[[.,.],[.,.]]]]] => 13
[.,[[[.,[.,.]],.],[.,.]]] => [6,3,2,4,5,1] => [1,2,4,5,3,6] => [.,[.,[[.,.],[.,[.,.]]]]] => 12
[.,[[[[.,.],.],.],[.,.]]] => [6,2,3,4,5,1] => [1,2,3,4,5,6] => [.,[.,[.,[.,[.,[.,.]]]]]] => 15
[.,[[.,[.,[.,[.,.]]]],.]] => [5,4,3,2,6,1] => [1,2,6,3,4,5] => [.,[.,[[.,[.,[.,.]]],.]]] => 12
[.,[[.,[.,[[.,.],.]]],.]] => [4,5,3,2,6,1] => [1,2,6,3,4,5] => [.,[.,[[.,[.,[.,.]]],.]]] => 12
[.,[[.,[[.,.],[.,.]]],.]] => [5,3,4,2,6,1] => [1,2,6,3,4,5] => [.,[.,[[.,[.,[.,.]]],.]]] => 12
[.,[[.,[[.,[.,.]],.]],.]] => [4,3,5,2,6,1] => [1,2,6,3,5,4] => [.,[.,[[.,[[.,.],.]],.]]] => 11
[.,[[.,[[[.,.],.],.]],.]] => [3,4,5,2,6,1] => [1,2,6,3,4,5] => [.,[.,[[.,[.,[.,.]]],.]]] => 12
[.,[[[.,.],[.,[.,.]]],.]] => [5,4,2,3,6,1] => [1,2,3,6,4,5] => [.,[.,[.,[[.,[.,.]],.]]]] => 13
[.,[[[.,.],[[.,.],.]],.]] => [4,5,2,3,6,1] => [1,2,3,6,4,5] => [.,[.,[.,[[.,[.,.]],.]]]] => 13
[.,[[[.,[.,.]],[.,.]],.]] => [5,3,2,4,6,1] => [1,2,4,6,3,5] => [.,[.,[[.,.],[[.,.],.]]]] => 11
[.,[[[[.,.],.],[.,.]],.]] => [5,2,3,4,6,1] => [1,2,3,4,6,5] => [.,[.,[.,[.,[[.,.],.]]]]] => 14
>>> Load all 201 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The sum of the sizes of the right subtrees of a binary tree.
This statistic corresponds to St000012The area of a Dyck path. under the Tamari Dyck path-binary tree bijection, and to St000018The number of inversions of a permutation. of the $312$-avoiding permutation corresponding to the binary tree.
It is also the sum of all heights $j$ of the coordinates $(i,j)$ of the Dyck path corresponding to the binary tree.
This statistic corresponds to St000012The area of a Dyck path. under the Tamari Dyck path-binary tree bijection, and to St000018The number of inversions of a permutation. of the $312$-avoiding permutation corresponding to the binary tree.
It is also the sum of all heights $j$ of the coordinates $(i,j)$ of the Dyck path corresponding to the binary tree.
Map
binary search tree: left to right
Description
Return the shape of the binary search tree of the permutation as a non labelled binary tree.
Map
runsort
Description
The permutation obtained by sorting the increasing runs lexicographically.
Map
to 132-avoiding permutation
Description
Return a 132-avoiding permutation corresponding to a binary tree.
The linear extensions of a binary tree form an interval of the weak order called the Sylvester class of the tree. This permutation is the maximal element of the Sylvester class.
The linear extensions of a binary tree form an interval of the weak order called the Sylvester class of the tree. This permutation is the maximal element of the Sylvester class.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!