Identifier
-
Mp00129:
Dyck paths
—to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶
Permutations
Mp00239: Permutations —Corteel⟶ Permutations
St000162: Permutations ⟶ ℤ
Values
[1,0] => [1] => [1] => 0
[1,0,1,0] => [2,1] => [2,1] => 1
[1,1,0,0] => [1,2] => [1,2] => 0
[1,0,1,0,1,0] => [2,3,1] => [3,2,1] => 1
[1,0,1,1,0,0] => [2,1,3] => [2,1,3] => 1
[1,1,0,0,1,0] => [1,3,2] => [1,3,2] => 1
[1,1,0,1,0,0] => [3,1,2] => [3,1,2] => 1
[1,1,1,0,0,0] => [1,2,3] => [1,2,3] => 0
[1,0,1,0,1,0,1,0] => [2,3,4,1] => [4,2,3,1] => 1
[1,0,1,0,1,1,0,0] => [2,3,1,4] => [3,2,1,4] => 1
[1,0,1,1,0,0,1,0] => [2,1,4,3] => [2,1,4,3] => 2
[1,0,1,1,0,1,0,0] => [2,4,1,3] => [4,2,1,3] => 1
[1,0,1,1,1,0,0,0] => [2,1,3,4] => [2,1,3,4] => 1
[1,1,0,0,1,0,1,0] => [1,3,4,2] => [1,4,3,2] => 1
[1,1,0,0,1,1,0,0] => [1,3,2,4] => [1,3,2,4] => 1
[1,1,0,1,0,0,1,0] => [3,1,4,2] => [4,1,3,2] => 1
[1,1,0,1,0,1,0,0] => [3,4,1,2] => [4,3,2,1] => 2
[1,1,0,1,1,0,0,0] => [3,1,2,4] => [3,1,2,4] => 1
[1,1,1,0,0,0,1,0] => [1,2,4,3] => [1,2,4,3] => 1
[1,1,1,0,0,1,0,0] => [1,4,2,3] => [1,4,2,3] => 1
[1,1,1,0,1,0,0,0] => [4,1,2,3] => [4,1,2,3] => 1
[1,1,1,1,0,0,0,0] => [1,2,3,4] => [1,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0] => [2,3,4,5,1] => [5,2,3,4,1] => 1
[1,0,1,0,1,0,1,1,0,0] => [2,3,4,1,5] => [4,2,3,1,5] => 1
[1,0,1,0,1,1,0,0,1,0] => [2,3,1,5,4] => [3,2,1,5,4] => 2
[1,0,1,0,1,1,0,1,0,0] => [2,3,5,1,4] => [5,2,3,1,4] => 1
[1,0,1,0,1,1,1,0,0,0] => [2,3,1,4,5] => [3,2,1,4,5] => 1
[1,0,1,1,0,0,1,0,1,0] => [2,1,4,5,3] => [2,1,5,4,3] => 2
[1,0,1,1,0,0,1,1,0,0] => [2,1,4,3,5] => [2,1,4,3,5] => 2
[1,0,1,1,0,1,0,0,1,0] => [2,4,1,5,3] => [5,2,1,4,3] => 1
[1,0,1,1,0,1,0,1,0,0] => [2,4,5,1,3] => [5,2,4,3,1] => 2
[1,0,1,1,0,1,1,0,0,0] => [2,4,1,3,5] => [4,2,1,3,5] => 1
[1,0,1,1,1,0,0,0,1,0] => [2,1,3,5,4] => [2,1,3,5,4] => 2
[1,0,1,1,1,0,0,1,0,0] => [2,1,5,3,4] => [2,1,5,3,4] => 2
[1,0,1,1,1,0,1,0,0,0] => [2,5,1,3,4] => [5,2,1,3,4] => 1
[1,0,1,1,1,1,0,0,0,0] => [2,1,3,4,5] => [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,0,1,0] => [1,3,4,5,2] => [1,5,3,4,2] => 1
[1,1,0,0,1,0,1,1,0,0] => [1,3,4,2,5] => [1,4,3,2,5] => 1
[1,1,0,0,1,1,0,0,1,0] => [1,3,2,5,4] => [1,3,2,5,4] => 2
[1,1,0,0,1,1,0,1,0,0] => [1,3,5,2,4] => [1,5,3,2,4] => 1
[1,1,0,0,1,1,1,0,0,0] => [1,3,2,4,5] => [1,3,2,4,5] => 1
[1,1,0,1,0,0,1,0,1,0] => [3,1,4,5,2] => [5,1,3,4,2] => 1
[1,1,0,1,0,0,1,1,0,0] => [3,1,4,2,5] => [4,1,3,2,5] => 1
[1,1,0,1,0,1,0,0,1,0] => [3,4,1,5,2] => [5,3,2,4,1] => 2
[1,1,0,1,0,1,0,1,0,0] => [3,4,5,1,2] => [5,4,3,2,1] => 2
[1,1,0,1,0,1,1,0,0,0] => [3,4,1,2,5] => [4,3,2,1,5] => 2
[1,1,0,1,1,0,0,0,1,0] => [3,1,2,5,4] => [3,1,2,5,4] => 2
[1,1,0,1,1,0,0,1,0,0] => [3,1,5,2,4] => [5,1,3,2,4] => 1
[1,1,0,1,1,0,1,0,0,0] => [3,5,1,2,4] => [5,3,2,1,4] => 2
[1,1,0,1,1,1,0,0,0,0] => [3,1,2,4,5] => [3,1,2,4,5] => 1
[1,1,1,0,0,0,1,0,1,0] => [1,2,4,5,3] => [1,2,5,4,3] => 1
[1,1,1,0,0,0,1,1,0,0] => [1,2,4,3,5] => [1,2,4,3,5] => 1
[1,1,1,0,0,1,0,0,1,0] => [1,4,2,5,3] => [1,5,2,4,3] => 1
[1,1,1,0,0,1,0,1,0,0] => [1,4,5,2,3] => [1,5,4,3,2] => 2
[1,1,1,0,0,1,1,0,0,0] => [1,4,2,3,5] => [1,4,2,3,5] => 1
[1,1,1,0,1,0,0,0,1,0] => [4,1,2,5,3] => [5,1,2,4,3] => 1
[1,1,1,0,1,0,0,1,0,0] => [4,1,5,2,3] => [5,1,4,3,2] => 2
[1,1,1,0,1,0,1,0,0,0] => [4,5,1,2,3] => [5,4,2,3,1] => 2
[1,1,1,0,1,1,0,0,0,0] => [4,1,2,3,5] => [4,1,2,3,5] => 1
[1,1,1,1,0,0,0,0,1,0] => [1,2,3,5,4] => [1,2,3,5,4] => 1
[1,1,1,1,0,0,0,1,0,0] => [1,2,5,3,4] => [1,2,5,3,4] => 1
[1,1,1,1,0,0,1,0,0,0] => [1,5,2,3,4] => [1,5,2,3,4] => 1
[1,1,1,1,0,1,0,0,0,0] => [5,1,2,3,4] => [5,1,2,3,4] => 1
[1,1,1,1,1,0,0,0,0,0] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,0,1,0,1,0] => [2,3,4,5,6,1] => [6,2,3,4,5,1] => 1
[1,0,1,0,1,0,1,0,1,1,0,0] => [2,3,4,5,1,6] => [5,2,3,4,1,6] => 1
[1,0,1,0,1,0,1,1,0,0,1,0] => [2,3,4,1,6,5] => [4,2,3,1,6,5] => 2
[1,0,1,0,1,0,1,1,0,1,0,0] => [2,3,4,6,1,5] => [6,2,3,4,1,5] => 1
[1,0,1,0,1,0,1,1,1,0,0,0] => [2,3,4,1,5,6] => [4,2,3,1,5,6] => 1
[1,0,1,0,1,1,0,0,1,0,1,0] => [2,3,1,5,6,4] => [3,2,1,6,5,4] => 2
[1,0,1,0,1,1,0,0,1,1,0,0] => [2,3,1,5,4,6] => [3,2,1,5,4,6] => 2
[1,0,1,0,1,1,0,1,0,0,1,0] => [2,3,5,1,6,4] => [6,2,3,1,5,4] => 1
[1,0,1,0,1,1,0,1,0,1,0,0] => [2,3,5,6,1,4] => [6,2,3,5,4,1] => 2
[1,0,1,0,1,1,0,1,1,0,0,0] => [2,3,5,1,4,6] => [5,2,3,1,4,6] => 1
[1,0,1,0,1,1,1,0,0,0,1,0] => [2,3,1,4,6,5] => [3,2,1,4,6,5] => 2
[1,0,1,0,1,1,1,0,0,1,0,0] => [2,3,1,6,4,5] => [3,2,1,6,4,5] => 2
[1,0,1,0,1,1,1,0,1,0,0,0] => [2,3,6,1,4,5] => [6,2,3,1,4,5] => 1
[1,0,1,0,1,1,1,1,0,0,0,0] => [2,3,1,4,5,6] => [3,2,1,4,5,6] => 1
[1,0,1,1,0,0,1,0,1,0,1,0] => [2,1,4,5,6,3] => [2,1,6,4,5,3] => 2
[1,0,1,1,0,0,1,0,1,1,0,0] => [2,1,4,5,3,6] => [2,1,5,4,3,6] => 2
[1,0,1,1,0,0,1,1,0,0,1,0] => [2,1,4,3,6,5] => [2,1,4,3,6,5] => 3
[1,0,1,1,0,0,1,1,0,1,0,0] => [2,1,4,6,3,5] => [2,1,6,4,3,5] => 2
[1,0,1,1,0,0,1,1,1,0,0,0] => [2,1,4,3,5,6] => [2,1,4,3,5,6] => 2
[1,0,1,1,0,1,0,0,1,0,1,0] => [2,4,1,5,6,3] => [6,2,1,4,5,3] => 1
[1,0,1,1,0,1,0,0,1,1,0,0] => [2,4,1,5,3,6] => [5,2,1,4,3,6] => 1
[1,0,1,1,0,1,0,1,0,0,1,0] => [2,4,5,1,6,3] => [6,2,4,3,5,1] => 2
[1,0,1,1,0,1,0,1,0,1,0,0] => [2,4,5,6,1,3] => [6,2,5,4,3,1] => 2
[1,0,1,1,0,1,0,1,1,0,0,0] => [2,4,5,1,3,6] => [5,2,4,3,1,6] => 2
[1,0,1,1,0,1,1,0,0,0,1,0] => [2,4,1,3,6,5] => [4,2,1,3,6,5] => 2
[1,0,1,1,0,1,1,0,0,1,0,0] => [2,4,1,6,3,5] => [6,2,1,4,3,5] => 1
[1,0,1,1,0,1,1,0,1,0,0,0] => [2,4,6,1,3,5] => [6,2,4,3,1,5] => 2
[1,0,1,1,0,1,1,1,0,0,0,0] => [2,4,1,3,5,6] => [4,2,1,3,5,6] => 1
[1,0,1,1,1,0,0,0,1,0,1,0] => [2,1,3,5,6,4] => [2,1,3,6,5,4] => 2
[1,0,1,1,1,0,0,0,1,1,0,0] => [2,1,3,5,4,6] => [2,1,3,5,4,6] => 2
[1,0,1,1,1,0,0,1,0,0,1,0] => [2,1,5,3,6,4] => [2,1,6,3,5,4] => 2
[1,0,1,1,1,0,0,1,0,1,0,0] => [2,1,5,6,3,4] => [2,1,6,5,4,3] => 3
[1,0,1,1,1,0,0,1,1,0,0,0] => [2,1,5,3,4,6] => [2,1,5,3,4,6] => 2
[1,0,1,1,1,0,1,0,0,0,1,0] => [2,5,1,3,6,4] => [6,2,1,3,5,4] => 1
[1,0,1,1,1,0,1,0,0,1,0,0] => [2,5,1,6,3,4] => [6,2,1,5,4,3] => 2
[1,0,1,1,1,0,1,0,1,0,0,0] => [2,5,6,1,3,4] => [6,2,5,3,4,1] => 2
[1,0,1,1,1,0,1,1,0,0,0,0] => [2,5,1,3,4,6] => [5,2,1,3,4,6] => 1
>>> Load all 196 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of nontrivial cycles in the cycle decomposition of a permutation.
This statistic is equal to the difference of the number of cycles of $\pi$ (see St000031The number of cycles in the cycle decomposition of a permutation.) and the number of fixed points of $\pi$ (see St000022The number of fixed points of a permutation.).
This statistic is equal to the difference of the number of cycles of $\pi$ (see St000031The number of cycles in the cycle decomposition of a permutation.) and the number of fixed points of $\pi$ (see St000022The number of fixed points of a permutation.).
Map
to 321-avoiding permutation (Billey-Jockusch-Stanley)
Description
The Billey-Jockusch-Stanley bijection to 321-avoiding permutations.
Map
Corteel
Description
Corteel's map interchanging the number of crossings and the number of nestings of a permutation.
This involution creates a labelled bicoloured Motzkin path, using the Foata-Zeilberger map. In the corresponding bump diagram, each label records the number of arcs nesting the given arc. Then each label is replaced by its complement, and the inverse of the Foata-Zeilberger map is applied.
This involution creates a labelled bicoloured Motzkin path, using the Foata-Zeilberger map. In the corresponding bump diagram, each label records the number of arcs nesting the given arc. Then each label is replaced by its complement, and the inverse of the Foata-Zeilberger map is applied.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!