Identifier
- St000166: Ordered trees ⟶ ℤ (values match St000094The depth of an ordered tree.)
Values
[[]] => 1
[[],[]] => 1
[[[]]] => 2
[[],[],[]] => 1
[[],[[]]] => 2
[[[]],[]] => 2
[[[],[]]] => 2
[[[[]]]] => 3
[[],[],[],[]] => 1
[[],[],[[]]] => 2
[[],[[]],[]] => 2
[[],[[],[]]] => 2
[[],[[[]]]] => 3
[[[]],[],[]] => 2
[[[]],[[]]] => 2
[[[],[]],[]] => 2
[[[[]]],[]] => 3
[[[],[],[]]] => 2
[[[],[[]]]] => 3
[[[[]],[]]] => 3
[[[[],[]]]] => 3
[[[[[]]]]] => 4
[[],[],[],[],[]] => 1
[[],[],[],[[]]] => 2
[[],[],[[]],[]] => 2
[[],[],[[],[]]] => 2
[[],[],[[[]]]] => 3
[[],[[]],[],[]] => 2
[[],[[]],[[]]] => 2
[[],[[],[]],[]] => 2
[[],[[[]]],[]] => 3
[[],[[],[],[]]] => 2
[[],[[],[[]]]] => 3
[[],[[[]],[]]] => 3
[[],[[[],[]]]] => 3
[[],[[[[]]]]] => 4
[[[]],[],[],[]] => 2
[[[]],[],[[]]] => 2
[[[]],[[]],[]] => 2
[[[]],[[],[]]] => 2
[[[]],[[[]]]] => 3
[[[],[]],[],[]] => 2
[[[[]]],[],[]] => 3
[[[],[]],[[]]] => 2
[[[[]]],[[]]] => 3
[[[],[],[]],[]] => 2
[[[],[[]]],[]] => 3
[[[[]],[]],[]] => 3
[[[[],[]]],[]] => 3
[[[[[]]]],[]] => 4
[[[],[],[],[]]] => 2
[[[],[],[[]]]] => 3
[[[],[[]],[]]] => 3
[[[],[[],[]]]] => 3
[[[],[[[]]]]] => 4
[[[[]],[],[]]] => 3
[[[[]],[[]]]] => 3
[[[[],[]],[]]] => 3
[[[[[]]],[]]] => 4
[[[[],[],[]]]] => 3
[[[[],[[]]]]] => 4
[[[[[]],[]]]] => 4
[[[[[],[]]]]] => 4
[[[[[[]]]]]] => 5
[[],[],[],[],[],[]] => 1
[[],[],[],[],[[]]] => 2
[[],[],[],[[]],[]] => 2
[[],[],[],[[],[]]] => 2
[[],[],[],[[[]]]] => 3
[[],[],[[]],[],[]] => 2
[[],[],[[]],[[]]] => 2
[[],[],[[],[]],[]] => 2
[[],[],[[[]]],[]] => 3
[[],[],[[],[],[]]] => 2
[[],[],[[],[[]]]] => 3
[[],[],[[[]],[]]] => 3
[[],[],[[[],[]]]] => 3
[[],[],[[[[]]]]] => 4
[[],[[]],[],[],[]] => 2
[[],[[]],[],[[]]] => 2
[[],[[]],[[]],[]] => 2
[[],[[]],[[],[]]] => 2
[[],[[]],[[[]]]] => 3
[[],[[],[]],[],[]] => 2
[[],[[[]]],[],[]] => 3
[[],[[],[]],[[]]] => 2
[[],[[[]]],[[]]] => 3
[[],[[],[],[]],[]] => 2
[[],[[],[[]]],[]] => 3
[[],[[[]],[]],[]] => 3
[[],[[[],[]]],[]] => 3
[[],[[[[]]]],[]] => 4
[[],[[],[],[],[]]] => 2
[[],[[],[],[[]]]] => 3
[[],[[],[[]],[]]] => 3
[[],[[],[[],[]]]] => 3
[[],[[],[[[]]]]] => 4
[[],[[[]],[],[]]] => 3
[[],[[[]],[[]]]] => 3
[[],[[[],[]],[]]] => 3
[[],[[[[]]],[]]] => 4
>>> Load all 196 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The depth minus 1 of an ordered tree.
The ordered trees of size $n$ are bijection with the Dyck paths of size $n-1$, and this statistic then corresponds to St000013The height of a Dyck path..
The ordered trees of size $n$ are bijection with the Dyck paths of size $n-1$, and this statistic then corresponds to St000013The height of a Dyck path..
Code
def statistic(t):
return t.depth()-1
Created
Nov 08, 2013 at 21:04 by Viviane Pons
Updated
Feb 17, 2015 at 21:18 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!