Identifier
-
Mp00081:
Standard tableaux
—reading word permutation⟶
Permutations
Mp00072: Permutations —binary search tree: left to right⟶ Binary trees
Mp00015: Binary trees —to ordered tree: right child = right brother⟶ Ordered trees
St000167: Ordered trees ⟶ ℤ
Values
[[1]] => [1] => [.,.] => [[]] => 1
[[1,2]] => [1,2] => [.,[.,.]] => [[],[]] => 2
[[1],[2]] => [2,1] => [[.,.],.] => [[[]]] => 1
[[1,2,3]] => [1,2,3] => [.,[.,[.,.]]] => [[],[],[]] => 3
[[1,3],[2]] => [2,1,3] => [[.,.],[.,.]] => [[[]],[]] => 2
[[1,2],[3]] => [3,1,2] => [[.,[.,.]],.] => [[[],[]]] => 2
[[1],[2],[3]] => [3,2,1] => [[[.,.],.],.] => [[[[]]]] => 1
[[1,2,3,4]] => [1,2,3,4] => [.,[.,[.,[.,.]]]] => [[],[],[],[]] => 4
[[1,3,4],[2]] => [2,1,3,4] => [[.,.],[.,[.,.]]] => [[[]],[],[]] => 3
[[1,2,4],[3]] => [3,1,2,4] => [[.,[.,.]],[.,.]] => [[[],[]],[]] => 3
[[1,2,3],[4]] => [4,1,2,3] => [[.,[.,[.,.]]],.] => [[[],[],[]]] => 3
[[1,3],[2,4]] => [2,4,1,3] => [[.,.],[[.,.],.]] => [[[]],[[]]] => 2
[[1,2],[3,4]] => [3,4,1,2] => [[.,[.,.]],[.,.]] => [[[],[]],[]] => 3
[[1,4],[2],[3]] => [3,2,1,4] => [[[.,.],.],[.,.]] => [[[[]]],[]] => 2
[[1,3],[2],[4]] => [4,2,1,3] => [[[.,.],[.,.]],.] => [[[[]],[]]] => 2
[[1,2],[3],[4]] => [4,3,1,2] => [[[.,[.,.]],.],.] => [[[[],[]]]] => 2
[[1],[2],[3],[4]] => [4,3,2,1] => [[[[.,.],.],.],.] => [[[[[]]]]] => 1
[[1,2,3,4,5]] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]] => [[],[],[],[],[]] => 5
[[1,3,4,5],[2]] => [2,1,3,4,5] => [[.,.],[.,[.,[.,.]]]] => [[[]],[],[],[]] => 4
[[1,2,4,5],[3]] => [3,1,2,4,5] => [[.,[.,.]],[.,[.,.]]] => [[[],[]],[],[]] => 4
[[1,2,3,5],[4]] => [4,1,2,3,5] => [[.,[.,[.,.]]],[.,.]] => [[[],[],[]],[]] => 4
[[1,2,3,4],[5]] => [5,1,2,3,4] => [[.,[.,[.,[.,.]]]],.] => [[[],[],[],[]]] => 4
[[1,3,5],[2,4]] => [2,4,1,3,5] => [[.,.],[[.,.],[.,.]]] => [[[]],[[]],[]] => 3
[[1,2,5],[3,4]] => [3,4,1,2,5] => [[.,[.,.]],[.,[.,.]]] => [[[],[]],[],[]] => 4
[[1,3,4],[2,5]] => [2,5,1,3,4] => [[.,.],[[.,[.,.]],.]] => [[[]],[[],[]]] => 3
[[1,2,4],[3,5]] => [3,5,1,2,4] => [[.,[.,.]],[[.,.],.]] => [[[],[]],[[]]] => 3
[[1,2,3],[4,5]] => [4,5,1,2,3] => [[.,[.,[.,.]]],[.,.]] => [[[],[],[]],[]] => 4
[[1,4,5],[2],[3]] => [3,2,1,4,5] => [[[.,.],.],[.,[.,.]]] => [[[[]]],[],[]] => 3
[[1,3,5],[2],[4]] => [4,2,1,3,5] => [[[.,.],[.,.]],[.,.]] => [[[[]],[]],[]] => 3
[[1,2,5],[3],[4]] => [4,3,1,2,5] => [[[.,[.,.]],.],[.,.]] => [[[[],[]]],[]] => 3
[[1,3,4],[2],[5]] => [5,2,1,3,4] => [[[.,.],[.,[.,.]]],.] => [[[[]],[],[]]] => 3
[[1,2,4],[3],[5]] => [5,3,1,2,4] => [[[.,[.,.]],[.,.]],.] => [[[[],[]],[]]] => 3
[[1,2,3],[4],[5]] => [5,4,1,2,3] => [[[.,[.,[.,.]]],.],.] => [[[[],[],[]]]] => 3
[[1,4],[2,5],[3]] => [3,2,5,1,4] => [[[.,.],.],[[.,.],.]] => [[[[]]],[[]]] => 2
[[1,3],[2,5],[4]] => [4,2,5,1,3] => [[[.,.],[.,.]],[.,.]] => [[[[]],[]],[]] => 3
[[1,2],[3,5],[4]] => [4,3,5,1,2] => [[[.,[.,.]],.],[.,.]] => [[[[],[]]],[]] => 3
[[1,3],[2,4],[5]] => [5,2,4,1,3] => [[[.,.],[[.,.],.]],.] => [[[[]],[[]]]] => 2
[[1,2],[3,4],[5]] => [5,3,4,1,2] => [[[.,[.,.]],[.,.]],.] => [[[[],[]],[]]] => 3
[[1,5],[2],[3],[4]] => [4,3,2,1,5] => [[[[.,.],.],.],[.,.]] => [[[[[]]]],[]] => 2
[[1,4],[2],[3],[5]] => [5,3,2,1,4] => [[[[.,.],.],[.,.]],.] => [[[[[]]],[]]] => 2
[[1,3],[2],[4],[5]] => [5,4,2,1,3] => [[[[.,.],[.,.]],.],.] => [[[[[]],[]]]] => 2
[[1,2],[3],[4],[5]] => [5,4,3,1,2] => [[[[.,[.,.]],.],.],.] => [[[[[],[]]]]] => 2
[[1],[2],[3],[4],[5]] => [5,4,3,2,1] => [[[[[.,.],.],.],.],.] => [[[[[[]]]]]] => 1
[[1,2,3,4,5,6]] => [1,2,3,4,5,6] => [.,[.,[.,[.,[.,[.,.]]]]]] => [[],[],[],[],[],[]] => 6
[[1,3,4,5,6],[2]] => [2,1,3,4,5,6] => [[.,.],[.,[.,[.,[.,.]]]]] => [[[]],[],[],[],[]] => 5
[[1,2,4,5,6],[3]] => [3,1,2,4,5,6] => [[.,[.,.]],[.,[.,[.,.]]]] => [[[],[]],[],[],[]] => 5
[[1,2,3,5,6],[4]] => [4,1,2,3,5,6] => [[.,[.,[.,.]]],[.,[.,.]]] => [[[],[],[]],[],[]] => 5
[[1,2,3,4,6],[5]] => [5,1,2,3,4,6] => [[.,[.,[.,[.,.]]]],[.,.]] => [[[],[],[],[]],[]] => 5
[[1,2,3,4,5],[6]] => [6,1,2,3,4,5] => [[.,[.,[.,[.,[.,.]]]]],.] => [[[],[],[],[],[]]] => 5
[[1,3,5,6],[2,4]] => [2,4,1,3,5,6] => [[.,.],[[.,.],[.,[.,.]]]] => [[[]],[[]],[],[]] => 4
[[1,2,5,6],[3,4]] => [3,4,1,2,5,6] => [[.,[.,.]],[.,[.,[.,.]]]] => [[[],[]],[],[],[]] => 5
[[1,3,4,6],[2,5]] => [2,5,1,3,4,6] => [[.,.],[[.,[.,.]],[.,.]]] => [[[]],[[],[]],[]] => 4
[[1,2,4,6],[3,5]] => [3,5,1,2,4,6] => [[.,[.,.]],[[.,.],[.,.]]] => [[[],[]],[[]],[]] => 4
[[1,2,3,6],[4,5]] => [4,5,1,2,3,6] => [[.,[.,[.,.]]],[.,[.,.]]] => [[[],[],[]],[],[]] => 5
[[1,3,4,5],[2,6]] => [2,6,1,3,4,5] => [[.,.],[[.,[.,[.,.]]],.]] => [[[]],[[],[],[]]] => 4
[[1,2,4,5],[3,6]] => [3,6,1,2,4,5] => [[.,[.,.]],[[.,[.,.]],.]] => [[[],[]],[[],[]]] => 4
[[1,2,3,5],[4,6]] => [4,6,1,2,3,5] => [[.,[.,[.,.]]],[[.,.],.]] => [[[],[],[]],[[]]] => 4
[[1,2,3,4],[5,6]] => [5,6,1,2,3,4] => [[.,[.,[.,[.,.]]]],[.,.]] => [[[],[],[],[]],[]] => 5
[[1,4,5,6],[2],[3]] => [3,2,1,4,5,6] => [[[.,.],.],[.,[.,[.,.]]]] => [[[[]]],[],[],[]] => 4
[[1,3,5,6],[2],[4]] => [4,2,1,3,5,6] => [[[.,.],[.,.]],[.,[.,.]]] => [[[[]],[]],[],[]] => 4
[[1,2,5,6],[3],[4]] => [4,3,1,2,5,6] => [[[.,[.,.]],.],[.,[.,.]]] => [[[[],[]]],[],[]] => 4
[[1,3,4,6],[2],[5]] => [5,2,1,3,4,6] => [[[.,.],[.,[.,.]]],[.,.]] => [[[[]],[],[]],[]] => 4
[[1,2,4,6],[3],[5]] => [5,3,1,2,4,6] => [[[.,[.,.]],[.,.]],[.,.]] => [[[[],[]],[]],[]] => 4
[[1,2,3,6],[4],[5]] => [5,4,1,2,3,6] => [[[.,[.,[.,.]]],.],[.,.]] => [[[[],[],[]]],[]] => 4
[[1,3,4,5],[2],[6]] => [6,2,1,3,4,5] => [[[.,.],[.,[.,[.,.]]]],.] => [[[[]],[],[],[]]] => 4
[[1,2,4,5],[3],[6]] => [6,3,1,2,4,5] => [[[.,[.,.]],[.,[.,.]]],.] => [[[[],[]],[],[]]] => 4
[[1,2,3,5],[4],[6]] => [6,4,1,2,3,5] => [[[.,[.,[.,.]]],[.,.]],.] => [[[[],[],[]],[]]] => 4
[[1,2,3,4],[5],[6]] => [6,5,1,2,3,4] => [[[.,[.,[.,[.,.]]]],.],.] => [[[[],[],[],[]]]] => 4
[[1,3,5],[2,4,6]] => [2,4,6,1,3,5] => [[.,.],[[.,.],[[.,.],.]]] => [[[]],[[]],[[]]] => 3
[[1,2,5],[3,4,6]] => [3,4,6,1,2,5] => [[.,[.,.]],[.,[[.,.],.]]] => [[[],[]],[],[[]]] => 4
[[1,3,4],[2,5,6]] => [2,5,6,1,3,4] => [[.,.],[[.,[.,.]],[.,.]]] => [[[]],[[],[]],[]] => 4
[[1,2,4],[3,5,6]] => [3,5,6,1,2,4] => [[.,[.,.]],[[.,.],[.,.]]] => [[[],[]],[[]],[]] => 4
[[1,2,3],[4,5,6]] => [4,5,6,1,2,3] => [[.,[.,[.,.]]],[.,[.,.]]] => [[[],[],[]],[],[]] => 5
[[1,4,6],[2,5],[3]] => [3,2,5,1,4,6] => [[[.,.],.],[[.,.],[.,.]]] => [[[[]]],[[]],[]] => 3
[[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => [[[.,.],[.,.]],[.,[.,.]]] => [[[[]],[]],[],[]] => 4
[[1,2,6],[3,5],[4]] => [4,3,5,1,2,6] => [[[.,[.,.]],.],[.,[.,.]]] => [[[[],[]]],[],[]] => 4
[[1,3,6],[2,4],[5]] => [5,2,4,1,3,6] => [[[.,.],[[.,.],.]],[.,.]] => [[[[]],[[]]],[]] => 3
[[1,2,6],[3,4],[5]] => [5,3,4,1,2,6] => [[[.,[.,.]],[.,.]],[.,.]] => [[[[],[]],[]],[]] => 4
[[1,4,5],[2,6],[3]] => [3,2,6,1,4,5] => [[[.,.],.],[[.,[.,.]],.]] => [[[[]]],[[],[]]] => 3
[[1,3,5],[2,6],[4]] => [4,2,6,1,3,5] => [[[.,.],[.,.]],[[.,.],.]] => [[[[]],[]],[[]]] => 3
[[1,2,5],[3,6],[4]] => [4,3,6,1,2,5] => [[[.,[.,.]],.],[[.,.],.]] => [[[[],[]]],[[]]] => 3
[[1,3,4],[2,6],[5]] => [5,2,6,1,3,4] => [[[.,.],[.,[.,.]]],[.,.]] => [[[[]],[],[]],[]] => 4
[[1,2,4],[3,6],[5]] => [5,3,6,1,2,4] => [[[.,[.,.]],[.,.]],[.,.]] => [[[[],[]],[]],[]] => 4
[[1,2,3],[4,6],[5]] => [5,4,6,1,2,3] => [[[.,[.,[.,.]]],.],[.,.]] => [[[[],[],[]]],[]] => 4
[[1,3,5],[2,4],[6]] => [6,2,4,1,3,5] => [[[.,.],[[.,.],[.,.]]],.] => [[[[]],[[]],[]]] => 3
[[1,2,5],[3,4],[6]] => [6,3,4,1,2,5] => [[[.,[.,.]],[.,[.,.]]],.] => [[[[],[]],[],[]]] => 4
[[1,3,4],[2,5],[6]] => [6,2,5,1,3,4] => [[[.,.],[[.,[.,.]],.]],.] => [[[[]],[[],[]]]] => 3
[[1,2,4],[3,5],[6]] => [6,3,5,1,2,4] => [[[.,[.,.]],[[.,.],.]],.] => [[[[],[]],[[]]]] => 3
[[1,2,3],[4,5],[6]] => [6,4,5,1,2,3] => [[[.,[.,[.,.]]],[.,.]],.] => [[[[],[],[]],[]]] => 4
[[1,5,6],[2],[3],[4]] => [4,3,2,1,5,6] => [[[[.,.],.],.],[.,[.,.]]] => [[[[[]]]],[],[]] => 3
[[1,4,6],[2],[3],[5]] => [5,3,2,1,4,6] => [[[[.,.],.],[.,.]],[.,.]] => [[[[[]]],[]],[]] => 3
[[1,3,6],[2],[4],[5]] => [5,4,2,1,3,6] => [[[[.,.],[.,.]],.],[.,.]] => [[[[[]],[]]],[]] => 3
[[1,2,6],[3],[4],[5]] => [5,4,3,1,2,6] => [[[[.,[.,.]],.],.],[.,.]] => [[[[[],[]]]],[]] => 3
[[1,4,5],[2],[3],[6]] => [6,3,2,1,4,5] => [[[[.,.],.],[.,[.,.]]],.] => [[[[[]]],[],[]]] => 3
[[1,3,5],[2],[4],[6]] => [6,4,2,1,3,5] => [[[[.,.],[.,.]],[.,.]],.] => [[[[[]],[]],[]]] => 3
[[1,2,5],[3],[4],[6]] => [6,4,3,1,2,5] => [[[[.,[.,.]],.],[.,.]],.] => [[[[[],[]]],[]]] => 3
[[1,3,4],[2],[5],[6]] => [6,5,2,1,3,4] => [[[[.,.],[.,[.,.]]],.],.] => [[[[[]],[],[]]]] => 3
[[1,2,4],[3],[5],[6]] => [6,5,3,1,2,4] => [[[[.,[.,.]],[.,.]],.],.] => [[[[[],[]],[]]]] => 3
[[1,2,3],[4],[5],[6]] => [6,5,4,1,2,3] => [[[[.,[.,[.,.]]],.],.],.] => [[[[[],[],[]]]]] => 3
[[1,4],[2,5],[3,6]] => [3,6,2,5,1,4] => [[[.,.],.],[[[.,.],.],.]] => [[[[]]],[[[]]]] => 2
[[1,3],[2,5],[4,6]] => [4,6,2,5,1,3] => [[[.,.],[.,.]],[[.,.],.]] => [[[[]],[]],[[]]] => 3
>>> Load all 260 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of leaves of an ordered tree.
This is the number of nodes which do not have any children.
This is the number of nodes which do not have any children.
Map
to ordered tree: right child = right brother
Description
Return an ordered tree of size n+1 by the following recursive rule:
- if x is the right child of y, x becomes the right brother of y,
- if x is the left child of y, x becomes the first child of y.
Map
binary search tree: left to right
Description
Return the shape of the binary search tree of the permutation as a non labelled binary tree.
Map
reading word permutation
Description
Return the permutation obtained by reading the entries of the tableau row by row, starting with the bottom-most row in English notation.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!