Identifier
- St000168: Ordered trees ⟶ ℤ
Values
[[]] => 0
[[],[]] => 0
[[[]]] => 1
[[],[],[]] => 0
[[],[[]]] => 1
[[[]],[]] => 1
[[[],[]]] => 1
[[[[]]]] => 2
[[],[],[],[]] => 0
[[],[],[[]]] => 1
[[],[[]],[]] => 1
[[],[[],[]]] => 1
[[],[[[]]]] => 2
[[[]],[],[]] => 1
[[[]],[[]]] => 2
[[[],[]],[]] => 1
[[[[]]],[]] => 2
[[[],[],[]]] => 1
[[[],[[]]]] => 2
[[[[]],[]]] => 2
[[[[],[]]]] => 2
[[[[[]]]]] => 3
[[],[],[],[],[]] => 0
[[],[],[],[[]]] => 1
[[],[],[[]],[]] => 1
[[],[],[[],[]]] => 1
[[],[],[[[]]]] => 2
[[],[[]],[],[]] => 1
[[],[[]],[[]]] => 2
[[],[[],[]],[]] => 1
[[],[[[]]],[]] => 2
[[],[[],[],[]]] => 1
[[],[[],[[]]]] => 2
[[],[[[]],[]]] => 2
[[],[[[],[]]]] => 2
[[],[[[[]]]]] => 3
[[[]],[],[],[]] => 1
[[[]],[],[[]]] => 2
[[[]],[[]],[]] => 2
[[[]],[[],[]]] => 2
[[[]],[[[]]]] => 3
[[[],[]],[],[]] => 1
[[[[]]],[],[]] => 2
[[[],[]],[[]]] => 2
[[[[]]],[[]]] => 3
[[[],[],[]],[]] => 1
[[[],[[]]],[]] => 2
[[[[]],[]],[]] => 2
[[[[],[]]],[]] => 2
[[[[[]]]],[]] => 3
[[[],[],[],[]]] => 1
[[[],[],[[]]]] => 2
[[[],[[]],[]]] => 2
[[[],[[],[]]]] => 2
[[[],[[[]]]]] => 3
[[[[]],[],[]]] => 2
[[[[]],[[]]]] => 3
[[[[],[]],[]]] => 2
[[[[[]]],[]]] => 3
[[[[],[],[]]]] => 2
[[[[],[[]]]]] => 3
[[[[[]],[]]]] => 3
[[[[[],[]]]]] => 3
[[[[[[]]]]]] => 4
[[],[],[],[],[],[]] => 0
[[],[],[],[],[[]]] => 1
[[],[],[],[[]],[]] => 1
[[],[],[],[[],[]]] => 1
[[],[],[],[[[]]]] => 2
[[],[],[[]],[],[]] => 1
[[],[],[[]],[[]]] => 2
[[],[],[[],[]],[]] => 1
[[],[],[[[]]],[]] => 2
[[],[],[[],[],[]]] => 1
[[],[],[[],[[]]]] => 2
[[],[],[[[]],[]]] => 2
[[],[],[[[],[]]]] => 2
[[],[],[[[[]]]]] => 3
[[],[[]],[],[],[]] => 1
[[],[[]],[],[[]]] => 2
[[],[[]],[[]],[]] => 2
[[],[[]],[[],[]]] => 2
[[],[[]],[[[]]]] => 3
[[],[[],[]],[],[]] => 1
[[],[[[]]],[],[]] => 2
[[],[[],[]],[[]]] => 2
[[],[[[]]],[[]]] => 3
[[],[[],[],[]],[]] => 1
[[],[[],[[]]],[]] => 2
[[],[[[]],[]],[]] => 2
[[],[[[],[]]],[]] => 2
[[],[[[[]]]],[]] => 3
[[],[[],[],[],[]]] => 1
[[],[[],[],[[]]]] => 2
[[],[[],[[]],[]]] => 2
[[],[[],[[],[]]]] => 2
[[],[[],[[[]]]]] => 3
[[],[[[]],[],[]]] => 2
[[],[[[]],[[]]]] => 3
[[],[[[],[]],[]]] => 2
[[],[[[[]]],[]]] => 3
>>> Load all 196 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of internal nodes of an ordered tree.
A node is internal if it is neither the root nor a leaf.
A node is internal if it is neither the root nor a leaf.
Code
def statistic(t):
stack = [c for c in t]
ni = 0
while len(stack)!=0:
tree = stack.pop()
if len(tree)!=0:
ni+=1
stack.extend(tree)
return ni
Created
Nov 09, 2013 at 01:04 by Viviane Pons
Updated
Apr 01, 2015 at 21:27 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!