Identifier
-
Mp00036:
Gelfand-Tsetlin patterns
—to semistandard tableau⟶
Semistandard tableaux
Mp00076: Semistandard tableaux —to Gelfand-Tsetlin pattern⟶ Gelfand-Tsetlin patterns
Mp00078: Gelfand-Tsetlin patterns —Schuetzenberger involution⟶ Gelfand-Tsetlin patterns
St000177: Gelfand-Tsetlin patterns ⟶ ℤ
Values
[[1,0],[1]] => [[1]] => [[1]] => [[1]] => 0
[[2,0],[0]] => [[2,2]] => [[2,0],[0]] => [[2,0],[2]] => 0
[[2,0],[1]] => [[1,2]] => [[2,0],[1]] => [[2,0],[1]] => 0
[[1,1],[1]] => [[1],[2]] => [[1,1],[1]] => [[1,1],[1]] => 0
[[1,0,0],[1,0],[1]] => [[1]] => [[1]] => [[1]] => 0
[[2,0,0],[2,0],[0]] => [[2,2]] => [[2,0],[0]] => [[2,0],[2]] => 0
[[2,0,0],[2,0],[1]] => [[1,2]] => [[2,0],[1]] => [[2,0],[1]] => 0
[[1,1,0],[1,1],[1]] => [[1],[2]] => [[1,1],[1]] => [[1,1],[1]] => 0
[[1,0,0,0],[1,0,0],[1,0],[1]] => [[1]] => [[1]] => [[1]] => 0
[[3,0,0],[0,0],[0]] => [[3,3,3]] => [[3,0,0],[0,0],[0]] => [[3,0,0],[3,0],[3]] => 0
[[3,0,0],[1,0],[0]] => [[2,3,3]] => [[3,0,0],[1,0],[0]] => [[3,0,0],[3,0],[2]] => 0
[[3,0,0],[1,0],[1]] => [[1,3,3]] => [[3,0,0],[1,0],[1]] => [[3,0,0],[2,0],[2]] => 0
[[3,0,0],[2,0],[0]] => [[2,2,3]] => [[3,0,0],[2,0],[0]] => [[3,0,0],[3,0],[1]] => 0
[[3,0,0],[2,0],[1]] => [[1,2,3]] => [[3,0,0],[2,0],[1]] => [[3,0,0],[2,0],[1]] => 1
[[3,0,0],[2,0],[2]] => [[1,1,3]] => [[3,0,0],[2,0],[2]] => [[3,0,0],[1,0],[1]] => 0
[[2,1,0],[1,0],[0]] => [[2,3],[3]] => [[2,1,0],[1,0],[0]] => [[2,1,0],[2,1],[2]] => 0
[[2,1,0],[1,0],[1]] => [[1,3],[3]] => [[2,1,0],[1,0],[1]] => [[2,1,0],[2,0],[2]] => 0
[[2,1,0],[1,1],[1]] => [[1,3],[2]] => [[2,1,0],[1,1],[1]] => [[2,1,0],[2,0],[1]] => 0
[[2,1,0],[2,0],[0]] => [[2,2],[3]] => [[2,1,0],[2,0],[0]] => [[2,1,0],[2,1],[1]] => 0
[[2,1,0],[2,0],[1]] => [[1,2],[3]] => [[2,1,0],[2,0],[1]] => [[2,1,0],[1,1],[1]] => 0
[[2,1,0],[2,0],[2]] => [[1,1],[3]] => [[2,1,0],[2,0],[2]] => [[2,1,0],[1,0],[1]] => 0
[[1,1,1],[1,1],[1]] => [[1],[2],[3]] => [[1,1,1],[1,1],[1]] => [[1,1,1],[1,1],[1]] => 0
[[2,0,0,0],[2,0,0],[2,0],[0]] => [[2,2]] => [[2,0],[0]] => [[2,0],[2]] => 0
[[2,0,0,0],[2,0,0],[2,0],[1]] => [[1,2]] => [[2,0],[1]] => [[2,0],[1]] => 0
[[1,1,0,0],[1,1,0],[1,1],[1]] => [[1],[2]] => [[1,1],[1]] => [[1,1],[1]] => 0
[[1,0,0,0,0],[1,0,0,0],[1,0,0],[1,0],[1]] => [[1]] => [[1]] => [[1]] => 0
[[3,0,0,0],[3,0,0],[0,0],[0]] => [[3,3,3]] => [[3,0,0],[0,0],[0]] => [[3,0,0],[3,0],[3]] => 0
[[3,0,0,0],[3,0,0],[1,0],[0]] => [[2,3,3]] => [[3,0,0],[1,0],[0]] => [[3,0,0],[3,0],[2]] => 0
[[3,0,0,0],[3,0,0],[1,0],[1]] => [[1,3,3]] => [[3,0,0],[1,0],[1]] => [[3,0,0],[2,0],[2]] => 0
[[3,0,0,0],[3,0,0],[2,0],[0]] => [[2,2,3]] => [[3,0,0],[2,0],[0]] => [[3,0,0],[3,0],[1]] => 0
[[3,0,0,0],[3,0,0],[2,0],[1]] => [[1,2,3]] => [[3,0,0],[2,0],[1]] => [[3,0,0],[2,0],[1]] => 1
[[3,0,0,0],[3,0,0],[2,0],[2]] => [[1,1,3]] => [[3,0,0],[2,0],[2]] => [[3,0,0],[1,0],[1]] => 0
[[2,1,0,0],[2,1,0],[1,0],[0]] => [[2,3],[3]] => [[2,1,0],[1,0],[0]] => [[2,1,0],[2,1],[2]] => 0
[[2,1,0,0],[2,1,0],[1,0],[1]] => [[1,3],[3]] => [[2,1,0],[1,0],[1]] => [[2,1,0],[2,0],[2]] => 0
[[2,1,0,0],[2,1,0],[1,1],[1]] => [[1,3],[2]] => [[2,1,0],[1,1],[1]] => [[2,1,0],[2,0],[1]] => 0
[[2,1,0,0],[2,1,0],[2,0],[0]] => [[2,2],[3]] => [[2,1,0],[2,0],[0]] => [[2,1,0],[2,1],[1]] => 0
[[2,1,0,0],[2,1,0],[2,0],[1]] => [[1,2],[3]] => [[2,1,0],[2,0],[1]] => [[2,1,0],[1,1],[1]] => 0
[[2,1,0,0],[2,1,0],[2,0],[2]] => [[1,1],[3]] => [[2,1,0],[2,0],[2]] => [[2,1,0],[1,0],[1]] => 0
[[1,1,1,0],[1,1,1],[1,1],[1]] => [[1],[2],[3]] => [[1,1,1],[1,1],[1]] => [[1,1,1],[1,1],[1]] => 0
[[2,0,0,0,0],[2,0,0,0],[2,0,0],[2,0],[0]] => [[2,2]] => [[2,0],[0]] => [[2,0],[2]] => 0
[[2,0,0,0,0],[2,0,0,0],[2,0,0],[2,0],[1]] => [[1,2]] => [[2,0],[1]] => [[2,0],[1]] => 0
[[1,1,0,0,0],[1,1,0,0],[1,1,0],[1,1],[1]] => [[1],[2]] => [[1,1],[1]] => [[1,1],[1]] => 0
[[1,0,0,0,0,0],[1,0,0,0,0],[1,0,0,0],[1,0,0],[1,0],[1]] => [[1]] => [[1]] => [[1]] => 0
[[4,0,0,0],[0,0,0],[0,0],[0]] => [[4,4,4,4]] => [[4,0,0,0],[0,0,0],[0,0],[0]] => [[4,0,0,0],[4,0,0],[4,0],[4]] => 0
[[4,0,0,0],[1,0,0],[0,0],[0]] => [[3,4,4,4]] => [[4,0,0,0],[1,0,0],[0,0],[0]] => [[4,0,0,0],[4,0,0],[4,0],[3]] => 0
[[4,0,0,0],[1,0,0],[1,0],[0]] => [[2,4,4,4]] => [[4,0,0,0],[1,0,0],[1,0],[0]] => [[4,0,0,0],[4,0,0],[3,0],[3]] => 0
[[4,0,0,0],[1,0,0],[1,0],[1]] => [[1,4,4,4]] => [[4,0,0,0],[1,0,0],[1,0],[1]] => [[4,0,0,0],[3,0,0],[3,0],[3]] => 0
[[4,0,0,0],[2,0,0],[0,0],[0]] => [[3,3,4,4]] => [[4,0,0,0],[2,0,0],[0,0],[0]] => [[4,0,0,0],[4,0,0],[4,0],[2]] => 0
[[4,0,0,0],[2,0,0],[1,0],[0]] => [[2,3,4,4]] => [[4,0,0,0],[2,0,0],[1,0],[0]] => [[4,0,0,0],[4,0,0],[3,0],[2]] => 1
[[4,0,0,0],[2,0,0],[1,0],[1]] => [[1,3,4,4]] => [[4,0,0,0],[2,0,0],[1,0],[1]] => [[4,0,0,0],[3,0,0],[3,0],[2]] => 1
[[4,0,0,0],[2,0,0],[2,0],[0]] => [[2,2,4,4]] => [[4,0,0,0],[2,0,0],[2,0],[0]] => [[4,0,0,0],[4,0,0],[2,0],[2]] => 0
[[4,0,0,0],[2,0,0],[2,0],[1]] => [[1,2,4,4]] => [[4,0,0,0],[2,0,0],[2,0],[1]] => [[4,0,0,0],[3,0,0],[2,0],[2]] => 1
[[4,0,0,0],[2,0,0],[2,0],[2]] => [[1,1,4,4]] => [[4,0,0,0],[2,0,0],[2,0],[2]] => [[4,0,0,0],[2,0,0],[2,0],[2]] => 0
[[4,0,0,0],[3,0,0],[0,0],[0]] => [[3,3,3,4]] => [[4,0,0,0],[3,0,0],[0,0],[0]] => [[4,0,0,0],[4,0,0],[4,0],[1]] => 0
[[4,0,0,0],[3,0,0],[1,0],[0]] => [[2,3,3,4]] => [[4,0,0,0],[3,0,0],[1,0],[0]] => [[4,0,0,0],[4,0,0],[3,0],[1]] => 1
[[4,0,0,0],[3,0,0],[1,0],[1]] => [[1,3,3,4]] => [[4,0,0,0],[3,0,0],[1,0],[1]] => [[4,0,0,0],[3,0,0],[3,0],[1]] => 1
[[4,0,0,0],[3,0,0],[2,0],[0]] => [[2,2,3,4]] => [[4,0,0,0],[3,0,0],[2,0],[0]] => [[4,0,0,0],[4,0,0],[2,0],[1]] => 1
[[4,0,0,0],[3,0,0],[2,0],[1]] => [[1,2,3,4]] => [[4,0,0,0],[3,0,0],[2,0],[1]] => [[4,0,0,0],[3,0,0],[2,0],[1]] => 2
[[4,0,0,0],[3,0,0],[2,0],[2]] => [[1,1,3,4]] => [[4,0,0,0],[3,0,0],[2,0],[2]] => [[4,0,0,0],[2,0,0],[2,0],[1]] => 1
[[4,0,0,0],[3,0,0],[3,0],[0]] => [[2,2,2,4]] => [[4,0,0,0],[3,0,0],[3,0],[0]] => [[4,0,0,0],[4,0,0],[1,0],[1]] => 0
[[4,0,0,0],[3,0,0],[3,0],[1]] => [[1,2,2,4]] => [[4,0,0,0],[3,0,0],[3,0],[1]] => [[4,0,0,0],[3,0,0],[1,0],[1]] => 1
[[4,0,0,0],[3,0,0],[3,0],[2]] => [[1,1,2,4]] => [[4,0,0,0],[3,0,0],[3,0],[2]] => [[4,0,0,0],[2,0,0],[1,0],[1]] => 1
[[4,0,0,0],[3,0,0],[3,0],[3]] => [[1,1,1,4]] => [[4,0,0,0],[3,0,0],[3,0],[3]] => [[4,0,0,0],[1,0,0],[1,0],[1]] => 0
[[3,1,0,0],[1,0,0],[0,0],[0]] => [[3,4,4],[4]] => [[3,1,0,0],[1,0,0],[0,0],[0]] => [[3,1,0,0],[3,1,0],[3,1],[3]] => 0
[[3,1,0,0],[1,0,0],[1,0],[0]] => [[2,4,4],[4]] => [[3,1,0,0],[1,0,0],[1,0],[0]] => [[3,1,0,0],[3,1,0],[3,0],[3]] => 0
[[3,1,0,0],[1,0,0],[1,0],[1]] => [[1,4,4],[4]] => [[3,1,0,0],[1,0,0],[1,0],[1]] => [[3,1,0,0],[3,0,0],[3,0],[3]] => 0
[[3,1,0,0],[1,1,0],[1,0],[0]] => [[2,4,4],[3]] => [[3,1,0,0],[1,1,0],[1,0],[0]] => [[3,1,0,0],[3,1,0],[3,0],[2]] => 0
[[3,1,0,0],[1,1,0],[1,0],[1]] => [[1,4,4],[3]] => [[3,1,0,0],[1,1,0],[1,0],[1]] => [[3,1,0,0],[3,0,0],[3,0],[2]] => 0
[[3,1,0,0],[1,1,0],[1,1],[1]] => [[1,4,4],[2]] => [[3,1,0,0],[1,1,0],[1,1],[1]] => [[3,1,0,0],[3,0,0],[2,0],[2]] => 0
[[3,1,0,0],[2,0,0],[0,0],[0]] => [[3,3,4],[4]] => [[3,1,0,0],[2,0,0],[0,0],[0]] => [[3,1,0,0],[3,1,0],[3,1],[2]] => 0
[[3,1,0,0],[2,0,0],[1,0],[0]] => [[2,3,4],[4]] => [[3,1,0,0],[2,0,0],[1,0],[0]] => [[3,1,0,0],[3,1,0],[2,1],[2]] => 0
[[3,1,0,0],[2,0,0],[1,0],[1]] => [[1,3,4],[4]] => [[3,1,0,0],[2,0,0],[1,0],[1]] => [[3,1,0,0],[2,1,0],[2,1],[2]] => 0
[[3,1,0,0],[2,0,0],[2,0],[0]] => [[2,2,4],[4]] => [[3,1,0,0],[2,0,0],[2,0],[0]] => [[3,1,0,0],[3,1,0],[2,0],[2]] => 0
[[3,1,0,0],[2,0,0],[2,0],[1]] => [[1,2,4],[4]] => [[3,1,0,0],[2,0,0],[2,0],[1]] => [[3,1,0,0],[2,1,0],[2,0],[2]] => 0
[[3,1,0,0],[2,0,0],[2,0],[2]] => [[1,1,4],[4]] => [[3,1,0,0],[2,0,0],[2,0],[2]] => [[3,1,0,0],[2,0,0],[2,0],[2]] => 0
[[3,1,0,0],[2,1,0],[1,0],[0]] => [[2,3,4],[3]] => [[3,1,0,0],[2,1,0],[1,0],[0]] => [[3,1,0,0],[3,1,0],[3,0],[1]] => 0
[[3,1,0,0],[2,1,0],[1,0],[1]] => [[1,3,4],[3]] => [[3,1,0,0],[2,1,0],[1,0],[1]] => [[3,1,0,0],[3,0,0],[3,0],[1]] => 0
[[3,1,0,0],[2,1,0],[1,1],[1]] => [[1,3,4],[2]] => [[3,1,0,0],[2,1,0],[1,1],[1]] => [[3,1,0,0],[3,0,0],[2,0],[1]] => 1
[[3,1,0,0],[2,1,0],[2,0],[0]] => [[2,2,4],[3]] => [[3,1,0,0],[2,1,0],[2,0],[0]] => [[3,1,0,0],[3,1,0],[2,0],[1]] => 1
[[3,1,0,0],[2,1,0],[2,0],[1]] => [[1,2,4],[3]] => [[3,1,0,0],[2,1,0],[2,0],[1]] => [[3,1,0,0],[2,1,0],[2,0],[1]] => 1
[[3,1,0,0],[2,1,0],[2,0],[2]] => [[1,1,4],[3]] => [[3,1,0,0],[2,1,0],[2,0],[2]] => [[3,1,0,0],[2,0,0],[2,0],[1]] => 1
[[3,1,0,0],[2,1,0],[2,1],[1]] => [[1,2,4],[2]] => [[3,1,0,0],[2,1,0],[2,1],[1]] => [[3,1,0,0],[3,0,0],[1,0],[1]] => 0
[[3,1,0,0],[2,1,0],[2,1],[2]] => [[1,1,4],[2]] => [[3,1,0,0],[2,1,0],[2,1],[2]] => [[3,1,0,0],[2,0,0],[1,0],[1]] => 1
[[3,1,0,0],[3,0,0],[0,0],[0]] => [[3,3,3],[4]] => [[3,1,0,0],[3,0,0],[0,0],[0]] => [[3,1,0,0],[3,1,0],[3,1],[1]] => 0
[[3,1,0,0],[3,0,0],[1,0],[0]] => [[2,3,3],[4]] => [[3,1,0,0],[3,0,0],[1,0],[0]] => [[3,1,0,0],[3,1,0],[2,1],[1]] => 1
[[3,1,0,0],[3,0,0],[1,0],[1]] => [[1,3,3],[4]] => [[3,1,0,0],[3,0,0],[1,0],[1]] => [[3,1,0,0],[2,1,0],[2,1],[1]] => 1
[[3,1,0,0],[3,0,0],[2,0],[0]] => [[2,2,3],[4]] => [[3,1,0,0],[3,0,0],[2,0],[0]] => [[3,1,0,0],[3,1,0],[1,1],[1]] => 0
[[3,1,0,0],[3,0,0],[2,0],[1]] => [[1,2,3],[4]] => [[3,1,0,0],[3,0,0],[2,0],[1]] => [[3,1,0,0],[2,1,0],[1,1],[1]] => 1
[[3,1,0,0],[3,0,0],[2,0],[2]] => [[1,1,3],[4]] => [[3,1,0,0],[3,0,0],[2,0],[2]] => [[3,1,0,0],[1,1,0],[1,1],[1]] => 0
[[3,1,0,0],[3,0,0],[3,0],[0]] => [[2,2,2],[4]] => [[3,1,0,0],[3,0,0],[3,0],[0]] => [[3,1,0,0],[3,1,0],[1,0],[1]] => 0
[[3,1,0,0],[3,0,0],[3,0],[1]] => [[1,2,2],[4]] => [[3,1,0,0],[3,0,0],[3,0],[1]] => [[3,1,0,0],[2,1,0],[1,0],[1]] => 1
[[3,1,0,0],[3,0,0],[3,0],[2]] => [[1,1,2],[4]] => [[3,1,0,0],[3,0,0],[3,0],[2]] => [[3,1,0,0],[1,1,0],[1,0],[1]] => 0
[[3,1,0,0],[3,0,0],[3,0],[3]] => [[1,1,1],[4]] => [[3,1,0,0],[3,0,0],[3,0],[3]] => [[3,1,0,0],[1,0,0],[1,0],[1]] => 0
[[2,2,0,0],[2,0,0],[0,0],[0]] => [[3,3],[4,4]] => [[2,2,0,0],[2,0,0],[0,0],[0]] => [[2,2,0,0],[2,2,0],[2,2],[2]] => 0
[[2,2,0,0],[2,0,0],[1,0],[0]] => [[2,3],[4,4]] => [[2,2,0,0],[2,0,0],[1,0],[0]] => [[2,2,0,0],[2,2,0],[2,1],[2]] => 1
[[2,2,0,0],[2,0,0],[1,0],[1]] => [[1,3],[4,4]] => [[2,2,0,0],[2,0,0],[1,0],[1]] => [[2,2,0,0],[2,1,0],[2,1],[2]] => 1
[[2,2,0,0],[2,0,0],[2,0],[0]] => [[2,2],[4,4]] => [[2,2,0,0],[2,0,0],[2,0],[0]] => [[2,2,0,0],[2,2,0],[2,0],[2]] => 0
[[2,2,0,0],[2,0,0],[2,0],[1]] => [[1,2],[4,4]] => [[2,2,0,0],[2,0,0],[2,0],[1]] => [[2,2,0,0],[2,1,0],[2,0],[2]] => 1
[[2,2,0,0],[2,0,0],[2,0],[2]] => [[1,1],[4,4]] => [[2,2,0,0],[2,0,0],[2,0],[2]] => [[2,2,0,0],[2,0,0],[2,0],[2]] => 0
[[2,2,0,0],[2,1,0],[1,0],[0]] => [[2,3],[3,4]] => [[2,2,0,0],[2,1,0],[1,0],[0]] => [[2,2,0,0],[2,2,0],[2,1],[1]] => 0
[[2,2,0,0],[2,1,0],[1,0],[1]] => [[1,3],[3,4]] => [[2,2,0,0],[2,1,0],[1,0],[1]] => [[2,2,0,0],[2,1,0],[2,1],[1]] => 0
>>> Load all 259 entries. <<<
search for individual values
searching the database for the individual values of this statistic
Description
The number of free tiles in the pattern.
The tiling of a pattern is the finest partition of the entries in the pattern, such that adjacent (NW,NE,SW,SE) entries that are equal belong to the same part. These parts are called tiles, and each entry in a pattern belong to exactly one tile.
A tile is free if it does not intersect any of the first and the last row.
The tiling of a pattern is the finest partition of the entries in the pattern, such that adjacent (NW,NE,SW,SE) entries that are equal belong to the same part. These parts are called tiles, and each entry in a pattern belong to exactly one tile.
A tile is free if it does not intersect any of the first and the last row.
Map
to semistandard tableau
Description
Return the Gelfand-Tsetlin pattern as a semistandard Young tableau.
Let G be a Gelfand-Tsetlin pattern and let λ(k) be its (n−k+1)-st row. The defining inequalities of a Gelfand-Tsetlin pattern imply, regarding each row as a partition,
λ(0)⊆λ(1)⊆⋯⊆λ(n),
where λ(0) is the empty partition.
Each skew shape λ(k)/λ(k−1) is moreover a horizontal strip.
We now define a semistandard tableau T(G) by inserting k into the cells of the skew shape λ(k)/λ(k−1), for k=1,…,n.
Let G be a Gelfand-Tsetlin pattern and let λ(k) be its (n−k+1)-st row. The defining inequalities of a Gelfand-Tsetlin pattern imply, regarding each row as a partition,
λ(0)⊆λ(1)⊆⋯⊆λ(n),
where λ(0) is the empty partition.
Each skew shape λ(k)/λ(k−1) is moreover a horizontal strip.
We now define a semistandard tableau T(G) by inserting k into the cells of the skew shape λ(k)/λ(k−1), for k=1,…,n.
Map
to Gelfand-Tsetlin pattern
Description
Return the Gelfand-Tsetlin pattern corresponding to the semistandard tableau.
Map
Schuetzenberger involution
Description
Applies the Schuetzenberger involution to a Gelfand-Tsetlin pattern.
The Schuetzenberger involution is usually regarded as an involution on semistandard Young tableaux with a fixed bound on the size of the entries. It is also known as evacuation, and in the context of crystal graphs of type A it realizes Lusztig's involution.
In the language of tableaux it is defined as follows. Consider a semistandard tableau with no entry larger than n. Use Schuetzenberger's jeu de taquin to slide all entries equal to 1 to the outer border of the tableau. Do the same for all entries equal to 2, restricting the tableau to the entries larger than 2, and so on, until the tableau is a reverse semistandard tableau. Finally, replace each entry with its complement with respect to n, that is, replace e with n+1−e.
The Schuetzenberger involution is usually regarded as an involution on semistandard Young tableaux with a fixed bound on the size of the entries. It is also known as evacuation, and in the context of crystal graphs of type A it realizes Lusztig's involution.
In the language of tableaux it is defined as follows. Consider a semistandard tableau with no entry larger than n. Use Schuetzenberger's jeu de taquin to slide all entries equal to 1 to the outer border of the tableau. Do the same for all entries equal to 2, restricting the tableau to the entries larger than 2, and so on, until the tableau is a reverse semistandard tableau. Finally, replace each entry with its complement with respect to n, that is, replace e with n+1−e.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!