Identifier
-
Mp00036:
Gelfand-Tsetlin patterns
—to semistandard tableau⟶
Semistandard tableaux
Mp00076: Semistandard tableaux —to Gelfand-Tsetlin pattern⟶ Gelfand-Tsetlin patterns
St000178: Gelfand-Tsetlin patterns ⟶ ℤ
Values
[[1,0],[1]] => [[1]] => [[1]] => 0
[[2,0],[0]] => [[2,2]] => [[2,0],[0]] => 0
[[2,0],[1]] => [[1,2]] => [[2,0],[1]] => 0
[[1,1],[1]] => [[1],[2]] => [[1,1],[1]] => 0
[[1,0,0],[1,0],[1]] => [[1]] => [[1]] => 0
[[2,0,0],[2,0],[0]] => [[2,2]] => [[2,0],[0]] => 0
[[2,0,0],[2,0],[1]] => [[1,2]] => [[2,0],[1]] => 0
[[1,1,0],[1,1],[1]] => [[1],[2]] => [[1,1],[1]] => 0
[[1,0,0,0],[1,0,0],[1,0],[1]] => [[1]] => [[1]] => 0
[[3,0,0],[0,0],[0]] => [[3,3,3]] => [[3,0,0],[0,0],[0]] => 0
[[3,0,0],[1,0],[0]] => [[2,3,3]] => [[3,0,0],[1,0],[0]] => 1
[[3,0,0],[1,0],[1]] => [[1,3,3]] => [[3,0,0],[1,0],[1]] => 0
[[3,0,0],[2,0],[0]] => [[2,2,3]] => [[3,0,0],[2,0],[0]] => 1
[[3,0,0],[2,0],[1]] => [[1,2,3]] => [[3,0,0],[2,0],[1]] => 1
[[3,0,0],[2,0],[2]] => [[1,1,3]] => [[3,0,0],[2,0],[2]] => 0
[[2,1,0],[1,0],[0]] => [[2,3],[3]] => [[2,1,0],[1,0],[0]] => 0
[[2,1,0],[1,0],[1]] => [[1,3],[3]] => [[2,1,0],[1,0],[1]] => 0
[[2,1,0],[1,1],[1]] => [[1,3],[2]] => [[2,1,0],[1,1],[1]] => 0
[[2,1,0],[2,0],[0]] => [[2,2],[3]] => [[2,1,0],[2,0],[0]] => 0
[[2,1,0],[2,0],[1]] => [[1,2],[3]] => [[2,1,0],[2,0],[1]] => 0
[[2,1,0],[2,0],[2]] => [[1,1],[3]] => [[2,1,0],[2,0],[2]] => 0
[[1,1,1],[1,1],[1]] => [[1],[2],[3]] => [[1,1,1],[1,1],[1]] => 0
[[2,0,0,0],[2,0,0],[2,0],[0]] => [[2,2]] => [[2,0],[0]] => 0
[[2,0,0,0],[2,0,0],[2,0],[1]] => [[1,2]] => [[2,0],[1]] => 0
[[1,1,0,0],[1,1,0],[1,1],[1]] => [[1],[2]] => [[1,1],[1]] => 0
[[1,0,0,0,0],[1,0,0,0],[1,0,0],[1,0],[1]] => [[1]] => [[1]] => 0
[[3,0,0,0],[3,0,0],[0,0],[0]] => [[3,3,3]] => [[3,0,0],[0,0],[0]] => 0
[[3,0,0,0],[3,0,0],[1,0],[0]] => [[2,3,3]] => [[3,0,0],[1,0],[0]] => 1
[[3,0,0,0],[3,0,0],[1,0],[1]] => [[1,3,3]] => [[3,0,0],[1,0],[1]] => 0
[[3,0,0,0],[3,0,0],[2,0],[0]] => [[2,2,3]] => [[3,0,0],[2,0],[0]] => 1
[[3,0,0,0],[3,0,0],[2,0],[1]] => [[1,2,3]] => [[3,0,0],[2,0],[1]] => 1
[[3,0,0,0],[3,0,0],[2,0],[2]] => [[1,1,3]] => [[3,0,0],[2,0],[2]] => 0
[[2,1,0,0],[2,1,0],[1,0],[0]] => [[2,3],[3]] => [[2,1,0],[1,0],[0]] => 0
[[2,1,0,0],[2,1,0],[1,0],[1]] => [[1,3],[3]] => [[2,1,0],[1,0],[1]] => 0
[[2,1,0,0],[2,1,0],[1,1],[1]] => [[1,3],[2]] => [[2,1,0],[1,1],[1]] => 0
[[2,1,0,0],[2,1,0],[2,0],[0]] => [[2,2],[3]] => [[2,1,0],[2,0],[0]] => 0
[[2,1,0,0],[2,1,0],[2,0],[1]] => [[1,2],[3]] => [[2,1,0],[2,0],[1]] => 0
[[2,1,0,0],[2,1,0],[2,0],[2]] => [[1,1],[3]] => [[2,1,0],[2,0],[2]] => 0
[[1,1,1,0],[1,1,1],[1,1],[1]] => [[1],[2],[3]] => [[1,1,1],[1,1],[1]] => 0
[[2,0,0,0,0],[2,0,0,0],[2,0,0],[2,0],[0]] => [[2,2]] => [[2,0],[0]] => 0
[[2,0,0,0,0],[2,0,0,0],[2,0,0],[2,0],[1]] => [[1,2]] => [[2,0],[1]] => 0
[[1,1,0,0,0],[1,1,0,0],[1,1,0],[1,1],[1]] => [[1],[2]] => [[1,1],[1]] => 0
[[1,0,0,0,0,0],[1,0,0,0,0],[1,0,0,0],[1,0,0],[1,0],[1]] => [[1]] => [[1]] => 0
[[4,0,0,0],[0,0,0],[0,0],[0]] => [[4,4,4,4]] => [[4,0,0,0],[0,0,0],[0,0],[0]] => 0
[[4,0,0,0],[1,0,0],[0,0],[0]] => [[3,4,4,4]] => [[4,0,0,0],[1,0,0],[0,0],[0]] => 1
[[4,0,0,0],[1,0,0],[1,0],[0]] => [[2,4,4,4]] => [[4,0,0,0],[1,0,0],[1,0],[0]] => 2
[[4,0,0,0],[1,0,0],[1,0],[1]] => [[1,4,4,4]] => [[4,0,0,0],[1,0,0],[1,0],[1]] => 0
[[4,0,0,0],[2,0,0],[0,0],[0]] => [[3,3,4,4]] => [[4,0,0,0],[2,0,0],[0,0],[0]] => 1
[[4,0,0,0],[2,0,0],[1,0],[0]] => [[2,3,4,4]] => [[4,0,0,0],[2,0,0],[1,0],[0]] => 2
[[4,0,0,0],[2,0,0],[1,0],[1]] => [[1,3,4,4]] => [[4,0,0,0],[2,0,0],[1,0],[1]] => 1
[[4,0,0,0],[2,0,0],[2,0],[0]] => [[2,2,4,4]] => [[4,0,0,0],[2,0,0],[2,0],[0]] => 2
[[4,0,0,0],[2,0,0],[2,0],[1]] => [[1,2,4,4]] => [[4,0,0,0],[2,0,0],[2,0],[1]] => 2
[[4,0,0,0],[2,0,0],[2,0],[2]] => [[1,1,4,4]] => [[4,0,0,0],[2,0,0],[2,0],[2]] => 0
[[4,0,0,0],[3,0,0],[0,0],[0]] => [[3,3,3,4]] => [[4,0,0,0],[3,0,0],[0,0],[0]] => 1
[[4,0,0,0],[3,0,0],[1,0],[0]] => [[2,3,3,4]] => [[4,0,0,0],[3,0,0],[1,0],[0]] => 2
[[4,0,0,0],[3,0,0],[1,0],[1]] => [[1,3,3,4]] => [[4,0,0,0],[3,0,0],[1,0],[1]] => 1
[[4,0,0,0],[3,0,0],[2,0],[0]] => [[2,2,3,4]] => [[4,0,0,0],[3,0,0],[2,0],[0]] => 2
[[4,0,0,0],[3,0,0],[2,0],[1]] => [[1,2,3,4]] => [[4,0,0,0],[3,0,0],[2,0],[1]] => 2
[[4,0,0,0],[3,0,0],[2,0],[2]] => [[1,1,3,4]] => [[4,0,0,0],[3,0,0],[2,0],[2]] => 1
[[4,0,0,0],[3,0,0],[3,0],[0]] => [[2,2,2,4]] => [[4,0,0,0],[3,0,0],[3,0],[0]] => 2
[[4,0,0,0],[3,0,0],[3,0],[1]] => [[1,2,2,4]] => [[4,0,0,0],[3,0,0],[3,0],[1]] => 2
[[4,0,0,0],[3,0,0],[3,0],[2]] => [[1,1,2,4]] => [[4,0,0,0],[3,0,0],[3,0],[2]] => 2
[[4,0,0,0],[3,0,0],[3,0],[3]] => [[1,1,1,4]] => [[4,0,0,0],[3,0,0],[3,0],[3]] => 0
[[3,1,0,0],[1,0,0],[0,0],[0]] => [[3,4,4],[4]] => [[3,1,0,0],[1,0,0],[0,0],[0]] => 0
[[3,1,0,0],[1,0,0],[1,0],[0]] => [[2,4,4],[4]] => [[3,1,0,0],[1,0,0],[1,0],[0]] => 0
[[3,1,0,0],[1,0,0],[1,0],[1]] => [[1,4,4],[4]] => [[3,1,0,0],[1,0,0],[1,0],[1]] => 0
[[3,1,0,0],[1,1,0],[1,0],[0]] => [[2,4,4],[3]] => [[3,1,0,0],[1,1,0],[1,0],[0]] => 0
[[3,1,0,0],[1,1,0],[1,0],[1]] => [[1,4,4],[3]] => [[3,1,0,0],[1,1,0],[1,0],[1]] => 0
[[3,1,0,0],[1,1,0],[1,1],[1]] => [[1,4,4],[2]] => [[3,1,0,0],[1,1,0],[1,1],[1]] => 0
[[3,1,0,0],[2,0,0],[0,0],[0]] => [[3,3,4],[4]] => [[3,1,0,0],[2,0,0],[0,0],[0]] => 1
[[3,1,0,0],[2,0,0],[1,0],[0]] => [[2,3,4],[4]] => [[3,1,0,0],[2,0,0],[1,0],[0]] => 2
[[3,1,0,0],[2,0,0],[1,0],[1]] => [[1,3,4],[4]] => [[3,1,0,0],[2,0,0],[1,0],[1]] => 1
[[3,1,0,0],[2,0,0],[2,0],[0]] => [[2,2,4],[4]] => [[3,1,0,0],[2,0,0],[2,0],[0]] => 2
[[3,1,0,0],[2,0,0],[2,0],[1]] => [[1,2,4],[4]] => [[3,1,0,0],[2,0,0],[2,0],[1]] => 2
[[3,1,0,0],[2,0,0],[2,0],[2]] => [[1,1,4],[4]] => [[3,1,0,0],[2,0,0],[2,0],[2]] => 0
[[3,1,0,0],[2,1,0],[1,0],[0]] => [[2,3,4],[3]] => [[3,1,0,0],[2,1,0],[1,0],[0]] => 1
[[3,1,0,0],[2,1,0],[1,0],[1]] => [[1,3,4],[3]] => [[3,1,0,0],[2,1,0],[1,0],[1]] => 1
[[3,1,0,0],[2,1,0],[1,1],[1]] => [[1,3,4],[2]] => [[3,1,0,0],[2,1,0],[1,1],[1]] => 1
[[3,1,0,0],[2,1,0],[2,0],[0]] => [[2,2,4],[3]] => [[3,1,0,0],[2,1,0],[2,0],[0]] => 2
[[3,1,0,0],[2,1,0],[2,0],[1]] => [[1,2,4],[3]] => [[3,1,0,0],[2,1,0],[2,0],[1]] => 2
[[3,1,0,0],[2,1,0],[2,0],[2]] => [[1,1,4],[3]] => [[3,1,0,0],[2,1,0],[2,0],[2]] => 0
[[3,1,0,0],[2,1,0],[2,1],[1]] => [[1,2,4],[2]] => [[3,1,0,0],[2,1,0],[2,1],[1]] => 2
[[3,1,0,0],[2,1,0],[2,1],[2]] => [[1,1,4],[2]] => [[3,1,0,0],[2,1,0],[2,1],[2]] => 0
[[3,1,0,0],[3,0,0],[0,0],[0]] => [[3,3,3],[4]] => [[3,1,0,0],[3,0,0],[0,0],[0]] => 0
[[3,1,0,0],[3,0,0],[1,0],[0]] => [[2,3,3],[4]] => [[3,1,0,0],[3,0,0],[1,0],[0]] => 1
[[3,1,0,0],[3,0,0],[1,0],[1]] => [[1,3,3],[4]] => [[3,1,0,0],[3,0,0],[1,0],[1]] => 0
[[3,1,0,0],[3,0,0],[2,0],[0]] => [[2,2,3],[4]] => [[3,1,0,0],[3,0,0],[2,0],[0]] => 1
[[3,1,0,0],[3,0,0],[2,0],[1]] => [[1,2,3],[4]] => [[3,1,0,0],[3,0,0],[2,0],[1]] => 1
[[3,1,0,0],[3,0,0],[2,0],[2]] => [[1,1,3],[4]] => [[3,1,0,0],[3,0,0],[2,0],[2]] => 0
[[3,1,0,0],[3,0,0],[3,0],[0]] => [[2,2,2],[4]] => [[3,1,0,0],[3,0,0],[3,0],[0]] => 0
[[3,1,0,0],[3,0,0],[3,0],[1]] => [[1,2,2],[4]] => [[3,1,0,0],[3,0,0],[3,0],[1]] => 0
[[3,1,0,0],[3,0,0],[3,0],[2]] => [[1,1,2],[4]] => [[3,1,0,0],[3,0,0],[3,0],[2]] => 0
[[3,1,0,0],[3,0,0],[3,0],[3]] => [[1,1,1],[4]] => [[3,1,0,0],[3,0,0],[3,0],[3]] => 0
[[2,2,0,0],[2,0,0],[0,0],[0]] => [[3,3],[4,4]] => [[2,2,0,0],[2,0,0],[0,0],[0]] => 0
[[2,2,0,0],[2,0,0],[1,0],[0]] => [[2,3],[4,4]] => [[2,2,0,0],[2,0,0],[1,0],[0]] => 1
[[2,2,0,0],[2,0,0],[1,0],[1]] => [[1,3],[4,4]] => [[2,2,0,0],[2,0,0],[1,0],[1]] => 0
[[2,2,0,0],[2,0,0],[2,0],[0]] => [[2,2],[4,4]] => [[2,2,0,0],[2,0,0],[2,0],[0]] => 0
[[2,2,0,0],[2,0,0],[2,0],[1]] => [[1,2],[4,4]] => [[2,2,0,0],[2,0,0],[2,0],[1]] => 0
[[2,2,0,0],[2,0,0],[2,0],[2]] => [[1,1],[4,4]] => [[2,2,0,0],[2,0,0],[2,0],[2]] => 0
[[2,2,0,0],[2,1,0],[1,0],[0]] => [[2,3],[3,4]] => [[2,2,0,0],[2,1,0],[1,0],[0]] => 2
[[2,2,0,0],[2,1,0],[1,0],[1]] => [[1,3],[3,4]] => [[2,2,0,0],[2,1,0],[1,0],[1]] => 0
>>> Load all 259 entries. <<<
search for individual values
searching the database for the individual values of this statistic
Description
Number of free entries.
The tiling of a pattern is the finest partition of the entries in
the pattern, such that adjacent (NW,NE,SW,SE) entries that are equal belong to the same part. These parts are called tiles, and each entry in a pattern belong to exactly one tile.
A tile is free if it do not intersect any of the first and the last row.
This statistic is the total number of entries that belong to a free tile.
The tiling of a pattern is the finest partition of the entries in
the pattern, such that adjacent (NW,NE,SW,SE) entries that are equal belong to the same part. These parts are called tiles, and each entry in a pattern belong to exactly one tile.
A tile is free if it do not intersect any of the first and the last row.
This statistic is the total number of entries that belong to a free tile.
Map
to semistandard tableau
Description
Return the Gelfand-Tsetlin pattern as a semistandard Young tableau.
Let G be a Gelfand-Tsetlin pattern and let λ(k) be its (n−k+1)-st row. The defining inequalities of a Gelfand-Tsetlin pattern imply, regarding each row as a partition,
λ(0)⊆λ(1)⊆⋯⊆λ(n),
where λ(0) is the empty partition.
Each skew shape λ(k)/λ(k−1) is moreover a horizontal strip.
We now define a semistandard tableau T(G) by inserting k into the cells of the skew shape λ(k)/λ(k−1), for k=1,…,n.
Let G be a Gelfand-Tsetlin pattern and let λ(k) be its (n−k+1)-st row. The defining inequalities of a Gelfand-Tsetlin pattern imply, regarding each row as a partition,
λ(0)⊆λ(1)⊆⋯⊆λ(n),
where λ(0) is the empty partition.
Each skew shape λ(k)/λ(k−1) is moreover a horizontal strip.
We now define a semistandard tableau T(G) by inserting k into the cells of the skew shape λ(k)/λ(k−1), for k=1,…,n.
Map
to Gelfand-Tsetlin pattern
Description
Return the Gelfand-Tsetlin pattern corresponding to the semistandard tableau.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!