Identifier
Values
([2],3) => [2] => 2
([1,1],3) => [1,1] => 2
([3,1],3) => [2,1] => 3
([2,1,1],3) => [1,1,1] => 6
([4,2],3) => [2,2] => 12
([3,1,1],3) => [2,1,1] => 8
([2,2,1,1],3) => [1,1,1,1] => 24
([5,3,1],3) => [2,2,1] => 24
([4,2,1,1],3) => [2,1,1,1] => 30
([3,2,2,1,1],3) => [1,1,1,1,1] => 120
([6,4,2],3) => [2,2,2] => 144
([5,3,1,1],3) => [2,2,1,1] => 80
([4,2,2,1,1],3) => [2,1,1,1,1] => 144
([3,3,2,2,1,1],3) => [1,1,1,1,1,1] => 720
([2],4) => [2] => 2
([1,1],4) => [1,1] => 2
([3],4) => [3] => 6
([2,1],4) => [2,1] => 3
([1,1,1],4) => [1,1,1] => 6
([4,1],4) => [3,1] => 8
([2,2],4) => [2,2] => 12
([3,1,1],4) => [2,1,1] => 8
([2,1,1,1],4) => [1,1,1,1] => 24
([5,2],4) => [3,2] => 24
([4,1,1],4) => [3,1,1] => 20
([3,2,1],4) => [2,2,1] => 24
([3,1,1,1],4) => [2,1,1,1] => 30
([2,2,1,1,1],4) => [1,1,1,1,1] => 120
([6,3],4) => [3,3] => 144
([5,2,1],4) => [3,2,1] => 45
([4,1,1,1],4) => [3,1,1,1] => 72
([4,2,2],4) => [2,2,2] => 144
([3,3,1,1],4) => [2,2,1,1] => 80
([3,2,1,1,1],4) => [2,1,1,1,1] => 144
([2,2,2,1,1,1],4) => [1,1,1,1,1,1] => 720
([2],5) => [2] => 2
([1,1],5) => [1,1] => 2
([3],5) => [3] => 6
([2,1],5) => [2,1] => 3
([1,1,1],5) => [1,1,1] => 6
([4],5) => [4] => 24
([3,1],5) => [3,1] => 8
([2,2],5) => [2,2] => 12
([2,1,1],5) => [2,1,1] => 8
([1,1,1,1],5) => [1,1,1,1] => 24
([5,1],5) => [4,1] => 30
([3,2],5) => [3,2] => 24
([4,1,1],5) => [3,1,1] => 20
([2,2,1],5) => [2,2,1] => 24
([3,1,1,1],5) => [2,1,1,1] => 30
([2,1,1,1,1],5) => [1,1,1,1,1] => 120
([6,2],5) => [4,2] => 80
([5,1,1],5) => [4,1,1] => 72
([3,3],5) => [3,3] => 144
([4,2,1],5) => [3,2,1] => 45
([4,1,1,1],5) => [3,1,1,1] => 72
([2,2,2],5) => [2,2,2] => 144
([3,2,1,1],5) => [2,2,1,1] => 80
([3,1,1,1,1],5) => [2,1,1,1,1] => 144
([2,2,1,1,1,1],5) => [1,1,1,1,1,1] => 720
([2],6) => [2] => 2
([1,1],6) => [1,1] => 2
([3],6) => [3] => 6
([2,1],6) => [2,1] => 3
([1,1,1],6) => [1,1,1] => 6
([4],6) => [4] => 24
([3,1],6) => [3,1] => 8
([2,2],6) => [2,2] => 12
([2,1,1],6) => [2,1,1] => 8
([1,1,1,1],6) => [1,1,1,1] => 24
([5],6) => [5] => 120
([4,1],6) => [4,1] => 30
([3,2],6) => [3,2] => 24
([3,1,1],6) => [3,1,1] => 20
([2,2,1],6) => [2,2,1] => 24
([2,1,1,1],6) => [2,1,1,1] => 30
([1,1,1,1,1],6) => [1,1,1,1,1] => 120
([6,1],6) => [5,1] => 144
([4,2],6) => [4,2] => 80
([5,1,1],6) => [4,1,1] => 72
([3,3],6) => [3,3] => 144
([3,2,1],6) => [3,2,1] => 45
([4,1,1,1],6) => [3,1,1,1] => 72
([2,2,2],6) => [2,2,2] => 144
([2,2,1,1],6) => [2,2,1,1] => 80
([3,1,1,1,1],6) => [2,1,1,1,1] => 144
([2,1,1,1,1,1],6) => [1,1,1,1,1,1] => 720
([7,2],6) => [5,2] => 360
([6,1,1],6) => [5,1,1] => 336
([4,3],6) => [4,3] => 360
([5,2,1],6) => [4,2,1] => 144
([5,1,1,1],6) => [4,1,1,1] => 252
([3,3,1],6) => [3,3,1] => 240
([3,2,2],6) => [3,2,2] => 240
([4,2,1,1],6) => [3,2,1,1] => 144
([4,1,1,1,1],6) => [3,1,1,1,1] => 336
([2,2,2,1],6) => [2,2,2,1] => 360
([3,2,1,1,1],6) => [2,2,1,1,1] => 360
([3,1,1,1,1,1],6) => [2,1,1,1,1,1] => 840
([2,2,1,1,1,1,1],6) => [1,1,1,1,1,1,1] => 5040
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The product of the hook lengths of the integer partition.
Consider the Ferrers diagram associated with the integer partition. For each cell in the diagram, drawn using the English convention, consider its hook: the cell itself, all cells in the same row to the right and all cells in the same column below. The hook length of a cell is the number of cells in the hook of a cell. This statistic is the product of the hook lengths of all cells in the partition.
Let $H_\lambda$ denote this product, then the number of standard Young tableaux of shape $\lambda$, (traditionally denoted $f^\lambda$) equals $n! / H_\lambda$. Therefore, it is consistent to set the product of the hook lengths of the empty partition equal to $1$.
Map
to bounded partition
Description
The (k-1)-bounded partition of a k-core.
Starting with a $k$-core, deleting all cells of hook length greater than or equal to $k$ yields a $(k-1)$-bounded partition [1, Theorem 7], see also [2, Section 1.2].