Identifier
Values
['A',1] => ([],1) => [1] => [1] => 1
['A',2] => ([(0,2),(1,2)],3) => [2,1] => [1,1,1] => 6
['B',2] => ([(0,3),(1,3),(3,2)],4) => [3,1] => [3,1] => 8
['G',2] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => [5,1] => [5,1] => 144
['A',3] => ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6) => [3,2,1] => [3,1,1,1] => 72
['B',3] => ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9) => [5,3,1] => [5,3,1] => 2240
['C',3] => ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9) => [5,3,1] => [5,3,1] => 2240
['A',4] => ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10) => [4,3,2,1] => [3,1,1,1,1,1,1,1] => 100800
['B',4] => ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16) => [7,5,3,1] => [7,5,3,1] => 50176000
['C',4] => ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16) => [7,5,3,1] => [7,5,3,1] => 50176000
['D',4] => ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12) => [5,3,3,1] => [6,5,1] => 414720
['A',5] => ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15) => [5,4,3,2,1] => [5,3,1,1,1,1,1,1,1] => 52416000
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The product of the hook lengths of the integer partition.
Consider the Ferrers diagram associated with the integer partition. For each cell in the diagram, drawn using the English convention, consider its hook: the cell itself, all cells in the same row to the right and all cells in the same column below. The hook length of a cell is the number of cells in the hook of a cell. This statistic is the product of the hook lengths of all cells in the partition.
Let $H_\lambda$ denote this product, then the number of standard Young tableaux of shape $\lambda$, (traditionally denoted $f^\lambda$) equals $n! / H_\lambda$. Therefore, it is consistent to set the product of the hook lengths of the empty partition equal to $1$.
Map
Glaisher-Franklin inverse
Description
The Glaisher-Franklin bijection on integer partitions.
This map sends the number of distinct repeated part sizes to the number of distinct even part sizes, see [1, 3.3.1].
Map
to root poset
Description
The root poset of a finite Cartan type.
This is the poset on the set of positive roots of its root system where $\alpha \prec \beta$ if $\beta - \alpha$ is a simple root.
Map
Greene-Kleitman invariant
Description
The Greene-Kleitman invariant of a poset.
This is the partition $(c_1 - c_0, c_2 - c_1, c_3 - c_2, \ldots)$, where $c_k$ is the maximum cardinality of a union of $k$ chains of the poset. Equivalently, this is the conjugate of the partition $(a_1 - a_0, a_2 - a_1, a_3 - a_2, \ldots)$, where $a_k$ is the maximum cardinality of a union of $k$ antichains of the poset.