Identifier
-
Mp00122:
Dyck paths
—Elizalde-Deutsch bijection⟶
Dyck paths
Mp00232: Dyck paths —parallelogram poset⟶ Posets
St000181: Posets ⟶ ℤ
Values
[1,0] => [1,0] => ([],1) => 1
[1,0,1,0] => [1,1,0,0] => ([(0,1)],2) => 1
[1,1,0,0] => [1,0,1,0] => ([(0,1)],2) => 1
[1,0,1,0,1,0] => [1,1,0,0,1,0] => ([(0,2),(2,1)],3) => 1
[1,0,1,1,0,0] => [1,1,0,1,0,0] => ([(0,2),(2,1)],3) => 1
[1,1,0,0,1,0] => [1,1,1,0,0,0] => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,1,0,1,0,0] => [1,0,1,1,0,0] => ([(0,2),(2,1)],3) => 1
[1,1,1,0,0,0] => [1,0,1,0,1,0] => ([(0,2),(2,1)],3) => 1
[1,0,1,0,1,0,1,0] => [1,1,0,0,1,1,0,0] => ([(0,3),(2,1),(3,2)],4) => 1
[1,0,1,0,1,1,0,0] => [1,1,0,1,1,0,0,0] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
[1,0,1,1,0,0,1,0] => [1,1,0,0,1,0,1,0] => ([(0,3),(2,1),(3,2)],4) => 1
[1,0,1,1,0,1,0,0] => [1,1,0,1,0,0,1,0] => ([(0,3),(2,1),(3,2)],4) => 1
[1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,0] => ([(0,3),(2,1),(3,2)],4) => 1
[1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,0] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 1
[1,1,0,1,0,0,1,0] => [1,1,1,0,0,0,1,0] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 1
[1,1,0,1,0,1,0,0] => [1,0,1,1,0,0,1,0] => ([(0,3),(2,1),(3,2)],4) => 1
[1,1,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0] => ([(0,3),(2,1),(3,2)],4) => 1
[1,1,1,0,0,1,0,0] => [1,0,1,1,1,0,0,0] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
[1,1,1,0,1,0,0,0] => [1,0,1,0,1,1,0,0] => ([(0,3),(2,1),(3,2)],4) => 1
[1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => ([(0,3),(2,1),(3,2)],4) => 1
[1,0,1,0,1,0,1,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[1,0,1,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[1,0,1,1,0,1,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,0,0,1,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[1,0,1,1,1,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,0,0,1,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,0,1,0,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[1,1,0,1,0,1,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[1,1,0,1,1,0,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[1,1,0,1,1,0,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[1,1,0,1,1,1,0,0,0,0] => [1,0,1,1,0,1,0,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[1,1,1,0,1,0,1,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[1,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,1,0,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[1,1,1,1,0,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of connected components of the Hasse diagram for the poset.
Map
Elizalde-Deutsch bijection
Description
The Elizalde-Deutsch bijection on Dyck paths.
.Let $n$ be the length of the Dyck path. Consider the steps $1,n,2,n-1,\dots$ of $D$. When considering the $i$-th step its corresponding matching step has not yet been read, let the $i$-th step of the image of $D$ be an up step, otherwise let it be a down step.
.Let $n$ be the length of the Dyck path. Consider the steps $1,n,2,n-1,\dots$ of $D$. When considering the $i$-th step its corresponding matching step has not yet been read, let the $i$-th step of the image of $D$ be an up step, otherwise let it be a down step.
Map
parallelogram poset
Description
The cell poset of the parallelogram polyomino corresponding to the Dyck path.
Let $D$ be a Dyck path of semilength $n$. The parallelogram polyomino $\gamma(D)$ is defined as follows: let $\tilde D = d_0 d_1 \dots d_{2n+1}$ be the Dyck path obtained by prepending an up step and appending a down step to $D$. Then, the upper path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with even indices, and the lower path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with odd indices.
This map returns the cell poset of $\gamma(D)$. In this partial order, the cells of the polyomino are the elements and a cell covers those cells with which it shares an edge and which are closer to the origin.
Let $D$ be a Dyck path of semilength $n$. The parallelogram polyomino $\gamma(D)$ is defined as follows: let $\tilde D = d_0 d_1 \dots d_{2n+1}$ be the Dyck path obtained by prepending an up step and appending a down step to $D$. Then, the upper path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with even indices, and the lower path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with odd indices.
This map returns the cell poset of $\gamma(D)$. In this partial order, the cells of the polyomino are the elements and a cell covers those cells with which it shares an edge and which are closer to the origin.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!