Identifier
- St000182: Integer partitions ⟶ ℤ
Values
=>
Cc0002;cc-rep
[]=>1
[1]=>1
[2]=>1
[1,1]=>1
[3]=>2
[2,1]=>3
[1,1,1]=>1
[4]=>6
[3,1]=>8
[2,2]=>3
[2,1,1]=>6
[1,1,1,1]=>1
[5]=>24
[4,1]=>30
[3,2]=>20
[3,1,1]=>20
[2,2,1]=>15
[2,1,1,1]=>10
[1,1,1,1,1]=>1
[6]=>120
[5,1]=>144
[4,2]=>90
[4,1,1]=>90
[3,3]=>40
[3,2,1]=>120
[3,1,1,1]=>40
[2,2,2]=>15
[2,2,1,1]=>45
[2,1,1,1,1]=>15
[1,1,1,1,1,1]=>1
[7]=>720
[6,1]=>840
[5,2]=>504
[5,1,1]=>504
[4,3]=>420
[4,2,1]=>630
[4,1,1,1]=>210
[3,3,1]=>280
[3,2,2]=>210
[3,2,1,1]=>420
[3,1,1,1,1]=>70
[2,2,2,1]=>105
[2,2,1,1,1]=>105
[2,1,1,1,1,1]=>21
[1,1,1,1,1,1,1]=>1
[8]=>5040
[7,1]=>5760
[6,2]=>3360
[6,1,1]=>3360
[5,3]=>2688
[5,2,1]=>4032
[5,1,1,1]=>1344
[4,4]=>1260
[4,3,1]=>3360
[4,2,2]=>1260
[4,2,1,1]=>2520
[4,1,1,1,1]=>420
[3,3,2]=>1120
[3,3,1,1]=>1120
[3,2,2,1]=>1680
[3,2,1,1,1]=>1120
[3,1,1,1,1,1]=>112
[2,2,2,2]=>105
[2,2,2,1,1]=>420
[2,2,1,1,1,1]=>210
[2,1,1,1,1,1,1]=>28
[1,1,1,1,1,1,1,1]=>1
[9]=>40320
[8,1]=>45360
[7,2]=>25920
[7,1,1]=>25920
[6,3]=>20160
[6,2,1]=>30240
[6,1,1,1]=>10080
[5,4]=>18144
[5,3,1]=>24192
[5,2,2]=>9072
[5,2,1,1]=>18144
[5,1,1,1,1]=>3024
[4,4,1]=>11340
[4,3,2]=>15120
[4,3,1,1]=>15120
[4,2,2,1]=>11340
[4,2,1,1,1]=>7560
[4,1,1,1,1,1]=>756
[3,3,3]=>2240
[3,3,2,1]=>10080
[3,3,1,1,1]=>3360
[3,2,2,2]=>2520
[3,2,2,1,1]=>7560
[3,2,1,1,1,1]=>2520
[3,1,1,1,1,1,1]=>168
[2,2,2,2,1]=>945
[2,2,2,1,1,1]=>1260
[2,2,1,1,1,1,1]=>378
[2,1,1,1,1,1,1,1]=>36
[1,1,1,1,1,1,1,1,1]=>1
[10]=>362880
[9,1]=>403200
[8,2]=>226800
[8,1,1]=>226800
[7,3]=>172800
[7,2,1]=>259200
[7,1,1,1]=>86400
[6,4]=>151200
[6,3,1]=>201600
[6,2,2]=>75600
[6,2,1,1]=>151200
[6,1,1,1,1]=>25200
[5,5]=>72576
[5,4,1]=>181440
[5,3,2]=>120960
[5,3,1,1]=>120960
[5,2,2,1]=>90720
[5,2,1,1,1]=>60480
[5,1,1,1,1,1]=>6048
[4,4,2]=>56700
[4,4,1,1]=>56700
[4,3,3]=>50400
[4,3,2,1]=>151200
[4,3,1,1,1]=>50400
[4,2,2,2]=>18900
[4,2,2,1,1]=>56700
[4,2,1,1,1,1]=>18900
[4,1,1,1,1,1,1]=>1260
[3,3,3,1]=>22400
[3,3,2,2]=>25200
[3,3,2,1,1]=>50400
[3,3,1,1,1,1]=>8400
[3,2,2,2,1]=>25200
[3,2,2,1,1,1]=>25200
[3,2,1,1,1,1,1]=>5040
[3,1,1,1,1,1,1,1]=>240
[2,2,2,2,2]=>945
[2,2,2,2,1,1]=>4725
[2,2,2,1,1,1,1]=>3150
[2,2,1,1,1,1,1,1]=>630
[2,1,1,1,1,1,1,1,1]=>45
[1,1,1,1,1,1,1,1,1,1]=>1
[11]=>3628800
[10,1]=>3991680
[9,1,1]=>2217600
[8,3]=>1663200
[7,4]=>1425600
[6,5]=>1330560
[6,4,1]=>1663200
[6,1,1,1,1,1]=>55440
[5,5,1]=>798336
[5,4,2]=>997920
[5,4,1,1]=>997920
[5,3,3]=>443520
[5,3,2,1]=>1330560
[5,3,1,1,1]=>443520
[5,2,2,2]=>166320
[5,2,2,1,1]=>498960
[5,2,1,1,1,1]=>166320
[4,4,3]=>415800
[4,4,2,1]=>623700
[4,4,1,1,1]=>207900
[4,3,3,1]=>554400
[4,3,2,2]=>415800
[4,3,2,1,1]=>831600
[4,2,2,2,1]=>207900
[3,3,3,2]=>123200
[3,3,3,1,1]=>123200
[3,3,2,2,1]=>277200
[3,2,2,2,2]=>34650
[2,2,2,2,2,1]=>10395
[2,1,1,1,1,1,1,1,1,1]=>55
[1,1,1,1,1,1,1,1,1,1,1]=>1
[12]=>39916800
[11,1]=>43545600
[10,1,1]=>23950080
[9,3]=>17740800
[7,5]=>13685760
[7,4,1]=>17107200
[6,6]=>6652800
[6,4,2]=>9979200
[5,5,2]=>4790016
[5,4,3]=>7983360
[5,4,2,1]=>11975040
[5,4,1,1,1]=>3991680
[5,3,3,1]=>5322240
[5,3,2,2]=>3991680
[5,3,2,1,1]=>7983360
[5,2,2,2,1]=>1995840
[5,2,2,1,1,1]=>1995840
[4,4,4]=>1247400
[4,4,3,1]=>4989600
[4,4,2,2]=>1871100
[4,4,2,1,1]=>3742200
[4,3,3,2]=>3326400
[4,3,3,1,1]=>3326400
[4,3,2,2,1]=>4989600
[3,3,3,3]=>246400
[3,3,3,2,1]=>1478400
[3,3,2,2,2]=>554400
[3,3,2,2,1,1]=>1663200
[3,2,2,2,2,1]=>415800
[2,2,2,2,2,2]=>10395
[1,1,1,1,1,1,1,1,1,1,1,1]=>1
[13]=>479001600
[12,1]=>518918400
[10,3]=>207567360
[8,5]=>155675520
[7,6]=>148262400
[7,5,1]=>177914880
[7,4,2]=>111196800
[6,6,1]=>86486400
[6,4,2,1]=>129729600
[5,5,3]=>41513472
[5,4,4]=>38918880
[5,4,3,1]=>103783680
[5,4,2,2]=>38918880
[5,4,2,1,1]=>77837760
[5,4,1,1,1,1]=>12972960
[5,3,3,2]=>34594560
[5,3,3,1,1]=>34594560
[5,3,2,2,1]=>51891840
[5,3,2,1,1,1]=>34594560
[4,4,4,1]=>16216200
[4,4,3,2]=>32432400
[4,4,3,1,1]=>32432400
[4,4,2,2,1]=>24324300
[4,3,3,3]=>9609600
[4,3,3,2,1]=>43243200
[3,3,3,3,1]=>3203200
[3,3,3,2,2]=>4804800
[3,3,2,2,2,1]=>7207200
[3,2,2,2,2,2]=>540540
[2,2,2,2,2,2,1]=>135135
[1,1,1,1,1,1,1,1,1,1,1,1,1]=>1
[9,5]=>1937295360
[7,7]=>889574400
[7,5,2]=>1245404160
[7,4,3]=>1037836800
[6,6,2]=>605404800
[6,4,4]=>454053600
[6,2,2,2,2]=>37837800
[5,5,4]=>435891456
[5,5,1,1,1,1]=>72648576
[5,4,3,2]=>726485760
[5,4,3,1,1]=>726485760
[5,4,2,2,1]=>544864320
[5,4,2,1,1,1]=>363242880
[5,3,3,3]=>107627520
[5,3,3,2,1]=>484323840
[5,2,2,2,2,1]=>45405360
[4,4,4,2]=>113513400
[4,4,3,3]=>151351200
[4,4,3,2,1]=>454053600
[4,3,2,2,2,1]=>151351200
[3,3,3,3,2]=>22422400
[3,3,3,3,1,1]=>22422400
[3,3,2,2,2,2]=>12612600
[2,2,2,2,2,2,2]=>135135
[1,1,1,1,1,1,1,1,1,1,1,1,1,1]=>1
[6,5,1,1,1,1]=>1816214400
[6,3,3,3]=>1345344000
[6,2,2,2,2,1]=>567567000
[5,5,5]=>1743565824
[5,3,2,2,2,1]=>1816214400
[4,4,4,3]=>1135134000
[4,4,4,1,1,1]=>567567000
[4,3,3,3,2]=>1009008000
[3,3,3,3,3]=>44844800
[3,3,3,3,2,1]=>336336000
[3,3,3,2,2,2]=>168168000
[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]=>1
[3,3,3,3,2,2]=>1345344000
[2,2,2,2,2,2,2,2]=>2027025
[2,2,2,2,2,2,2,2,2]=>34459425
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of permutations whose cycle type is the given integer partition.
This number is given by
$$\{ \pi \in \mathfrak{S}_n : \text{type}(\pi) = \lambda\} = \frac{n!}{\lambda_1 \cdots \lambda_k \mu_1(\lambda)! \cdots \mu_n(\lambda)!}$$
where $\mu_j(\lambda)$ denotes the number of parts of $\lambda$ equal to $j$.
All permutations with the same cycle type form a wikipedia:Conjugacy class.
This number is given by
$$\{ \pi \in \mathfrak{S}_n : \text{type}(\pi) = \lambda\} = \frac{n!}{\lambda_1 \cdots \lambda_k \mu_1(\lambda)! \cdots \mu_n(\lambda)!}$$
where $\mu_j(\lambda)$ denotes the number of parts of $\lambda$ equal to $j$.
All permutations with the same cycle type form a wikipedia:Conjugacy class.
References
[1] Section 1.3 p24 Kerber, A. Algebraic combinatorics via finite group actions MathSciNet:1115208
Code
def statistic(p): return p.conjugacy_class_size() def statistic_alternative(la): la = list(la) return factorial(sum(la))/prod(la)/prod(factorial(la.count(j)) for j in [1..la[0]+1])
Created
May 03, 2014 at 21:11 by Lahiru Kariyawasam
Updated
May 25, 2023 at 14:21 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!