Identifier
-
Mp00021:
Cores
—to bounded partition⟶
Integer partitions
St000182: Integer partitions ⟶ ℤ
Values
([2],3) => [2] => 1
([1,1],3) => [1,1] => 1
([3,1],3) => [2,1] => 3
([2,1,1],3) => [1,1,1] => 1
([4,2],3) => [2,2] => 3
([3,1,1],3) => [2,1,1] => 6
([2,2,1,1],3) => [1,1,1,1] => 1
([5,3,1],3) => [2,2,1] => 15
([4,2,1,1],3) => [2,1,1,1] => 10
([3,2,2,1,1],3) => [1,1,1,1,1] => 1
([6,4,2],3) => [2,2,2] => 15
([5,3,1,1],3) => [2,2,1,1] => 45
([4,2,2,1,1],3) => [2,1,1,1,1] => 15
([3,3,2,2,1,1],3) => [1,1,1,1,1,1] => 1
([2],4) => [2] => 1
([1,1],4) => [1,1] => 1
([3],4) => [3] => 2
([2,1],4) => [2,1] => 3
([1,1,1],4) => [1,1,1] => 1
([4,1],4) => [3,1] => 8
([2,2],4) => [2,2] => 3
([3,1,1],4) => [2,1,1] => 6
([2,1,1,1],4) => [1,1,1,1] => 1
([5,2],4) => [3,2] => 20
([4,1,1],4) => [3,1,1] => 20
([3,2,1],4) => [2,2,1] => 15
([3,1,1,1],4) => [2,1,1,1] => 10
([2,2,1,1,1],4) => [1,1,1,1,1] => 1
([6,3],4) => [3,3] => 40
([5,2,1],4) => [3,2,1] => 120
([4,1,1,1],4) => [3,1,1,1] => 40
([4,2,2],4) => [2,2,2] => 15
([3,3,1,1],4) => [2,2,1,1] => 45
([3,2,1,1,1],4) => [2,1,1,1,1] => 15
([2,2,2,1,1,1],4) => [1,1,1,1,1,1] => 1
([2],5) => [2] => 1
([1,1],5) => [1,1] => 1
([3],5) => [3] => 2
([2,1],5) => [2,1] => 3
([1,1,1],5) => [1,1,1] => 1
([4],5) => [4] => 6
([3,1],5) => [3,1] => 8
([2,2],5) => [2,2] => 3
([2,1,1],5) => [2,1,1] => 6
([1,1,1,1],5) => [1,1,1,1] => 1
([5,1],5) => [4,1] => 30
([3,2],5) => [3,2] => 20
([4,1,1],5) => [3,1,1] => 20
([2,2,1],5) => [2,2,1] => 15
([3,1,1,1],5) => [2,1,1,1] => 10
([2,1,1,1,1],5) => [1,1,1,1,1] => 1
([6,2],5) => [4,2] => 90
([5,1,1],5) => [4,1,1] => 90
([3,3],5) => [3,3] => 40
([4,2,1],5) => [3,2,1] => 120
([4,1,1,1],5) => [3,1,1,1] => 40
([2,2,2],5) => [2,2,2] => 15
([3,2,1,1],5) => [2,2,1,1] => 45
([3,1,1,1,1],5) => [2,1,1,1,1] => 15
([2,2,1,1,1,1],5) => [1,1,1,1,1,1] => 1
([2],6) => [2] => 1
([1,1],6) => [1,1] => 1
([3],6) => [3] => 2
([2,1],6) => [2,1] => 3
([1,1,1],6) => [1,1,1] => 1
([4],6) => [4] => 6
([3,1],6) => [3,1] => 8
([2,2],6) => [2,2] => 3
([2,1,1],6) => [2,1,1] => 6
([1,1,1,1],6) => [1,1,1,1] => 1
([5],6) => [5] => 24
([4,1],6) => [4,1] => 30
([3,2],6) => [3,2] => 20
([3,1,1],6) => [3,1,1] => 20
([2,2,1],6) => [2,2,1] => 15
([2,1,1,1],6) => [2,1,1,1] => 10
([1,1,1,1,1],6) => [1,1,1,1,1] => 1
([6,1],6) => [5,1] => 144
([4,2],6) => [4,2] => 90
([5,1,1],6) => [4,1,1] => 90
([3,3],6) => [3,3] => 40
([3,2,1],6) => [3,2,1] => 120
([4,1,1,1],6) => [3,1,1,1] => 40
([2,2,2],6) => [2,2,2] => 15
([2,2,1,1],6) => [2,2,1,1] => 45
([3,1,1,1,1],6) => [2,1,1,1,1] => 15
([2,1,1,1,1,1],6) => [1,1,1,1,1,1] => 1
([7,2],6) => [5,2] => 504
([6,1,1],6) => [5,1,1] => 504
([4,3],6) => [4,3] => 420
([5,2,1],6) => [4,2,1] => 630
([5,1,1,1],6) => [4,1,1,1] => 210
([3,3,1],6) => [3,3,1] => 280
([3,2,2],6) => [3,2,2] => 210
([4,2,1,1],6) => [3,2,1,1] => 420
([4,1,1,1,1],6) => [3,1,1,1,1] => 70
([2,2,2,1],6) => [2,2,2,1] => 105
([3,2,1,1,1],6) => [2,2,1,1,1] => 105
([3,1,1,1,1,1],6) => [2,1,1,1,1,1] => 21
([2,2,1,1,1,1,1],6) => [1,1,1,1,1,1,1] => 1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of permutations whose cycle type is the given integer partition.
This number is given by
$$\{ \pi \in \mathfrak{S}_n : \text{type}(\pi) = \lambda\} = \frac{n!}{\lambda_1 \cdots \lambda_k \mu_1(\lambda)! \cdots \mu_n(\lambda)!}$$
where $\mu_j(\lambda)$ denotes the number of parts of $\lambda$ equal to $j$.
All permutations with the same cycle type form a wikipedia:Conjugacy class.
This number is given by
$$\{ \pi \in \mathfrak{S}_n : \text{type}(\pi) = \lambda\} = \frac{n!}{\lambda_1 \cdots \lambda_k \mu_1(\lambda)! \cdots \mu_n(\lambda)!}$$
where $\mu_j(\lambda)$ denotes the number of parts of $\lambda$ equal to $j$.
All permutations with the same cycle type form a wikipedia:Conjugacy class.
Map
to bounded partition
Description
The (k-1)-bounded partition of a k-core.
Starting with a $k$-core, deleting all cells of hook length greater than or equal to $k$ yields a $(k-1)$-bounded partition [1, Theorem 7], see also [2, Section 1.2].
Starting with a $k$-core, deleting all cells of hook length greater than or equal to $k$ yields a $(k-1)$-bounded partition [1, Theorem 7], see also [2, Section 1.2].
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!