Identifier
- St000184: Integer partitions ⟶ ℤ
Values
=>
Cc0002;cc-rep
[]=>1
[1]=>1
[2]=>2
[1,1]=>2
[3]=>3
[2,1]=>2
[1,1,1]=>6
[4]=>4
[3,1]=>3
[2,2]=>8
[2,1,1]=>4
[1,1,1,1]=>24
[5]=>5
[4,1]=>4
[3,2]=>6
[3,1,1]=>6
[2,2,1]=>8
[2,1,1,1]=>12
[1,1,1,1,1]=>120
[6]=>6
[5,1]=>5
[4,2]=>8
[4,1,1]=>8
[3,3]=>18
[3,2,1]=>6
[3,1,1,1]=>18
[2,2,2]=>48
[2,2,1,1]=>16
[2,1,1,1,1]=>48
[1,1,1,1,1,1]=>720
[7]=>7
[6,1]=>6
[5,2]=>10
[5,1,1]=>10
[4,3]=>12
[4,2,1]=>8
[4,1,1,1]=>24
[3,3,1]=>18
[3,2,2]=>24
[3,2,1,1]=>12
[3,1,1,1,1]=>72
[2,2,2,1]=>48
[2,2,1,1,1]=>48
[2,1,1,1,1,1]=>240
[1,1,1,1,1,1,1]=>5040
[8]=>8
[7,1]=>7
[6,2]=>12
[6,1,1]=>12
[5,3]=>15
[5,2,1]=>10
[5,1,1,1]=>30
[4,4]=>32
[4,3,1]=>12
[4,2,2]=>32
[4,2,1,1]=>16
[4,1,1,1,1]=>96
[3,3,2]=>36
[3,3,1,1]=>36
[3,2,2,1]=>24
[3,2,1,1,1]=>36
[3,1,1,1,1,1]=>360
[2,2,2,2]=>384
[2,2,2,1,1]=>96
[2,2,1,1,1,1]=>192
[2,1,1,1,1,1,1]=>1440
[1,1,1,1,1,1,1,1]=>40320
[9]=>9
[8,1]=>8
[7,2]=>14
[7,1,1]=>14
[6,3]=>18
[6,2,1]=>12
[6,1,1,1]=>36
[5,4]=>20
[5,3,1]=>15
[5,2,2]=>40
[5,2,1,1]=>20
[5,1,1,1,1]=>120
[4,4,1]=>32
[4,3,2]=>24
[4,3,1,1]=>24
[4,2,2,1]=>32
[4,2,1,1,1]=>48
[4,1,1,1,1,1]=>480
[3,3,3]=>162
[3,3,2,1]=>36
[3,3,1,1,1]=>108
[3,2,2,2]=>144
[3,2,2,1,1]=>48
[3,2,1,1,1,1]=>144
[3,1,1,1,1,1,1]=>2160
[2,2,2,2,1]=>384
[2,2,2,1,1,1]=>288
[2,2,1,1,1,1,1]=>960
[2,1,1,1,1,1,1,1]=>10080
[1,1,1,1,1,1,1,1,1]=>362880
[10]=>10
[9,1]=>9
[8,2]=>16
[8,1,1]=>16
[7,3]=>21
[7,2,1]=>14
[7,1,1,1]=>42
[6,4]=>24
[6,3,1]=>18
[6,2,2]=>48
[6,2,1,1]=>24
[6,1,1,1,1]=>144
[5,5]=>50
[5,4,1]=>20
[5,3,2]=>30
[5,3,1,1]=>30
[5,2,2,1]=>40
[5,2,1,1,1]=>60
[5,1,1,1,1,1]=>600
[4,4,2]=>64
[4,4,1,1]=>64
[4,3,3]=>72
[4,3,2,1]=>24
[4,3,1,1,1]=>72
[4,2,2,2]=>192
[4,2,2,1,1]=>64
[4,2,1,1,1,1]=>192
[4,1,1,1,1,1,1]=>2880
[3,3,3,1]=>162
[3,3,2,2]=>144
[3,3,2,1,1]=>72
[3,3,1,1,1,1]=>432
[3,2,2,2,1]=>144
[3,2,2,1,1,1]=>144
[3,2,1,1,1,1,1]=>720
[3,1,1,1,1,1,1,1]=>15120
[2,2,2,2,2]=>3840
[2,2,2,2,1,1]=>768
[2,2,2,1,1,1,1]=>1152
[2,2,1,1,1,1,1,1]=>5760
[2,1,1,1,1,1,1,1,1]=>80640
[1,1,1,1,1,1,1,1,1,1]=>3628800
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The size of the centralizer of any permutation of given cycle type.
The centralizer (or commutant, equivalently normalizer) of an element $g$ of a group $G$ is the set of elements of $G$ that commute with $g$:
$$C_g = \{h \in G : hgh^{-1} = g\}.$$
Its size thus depends only on the conjugacy class of $g$.
The conjugacy classes of a permutation is determined by its cycle type, and the size of the centralizer of a permutation with cycle type $\lambda = (1^{a_1},2^{a_2},\dots)$ is
$$|C| = \Pi j^{a_j} a_j!$$
For example, for any permutation with cycle type $\lambda = (3,2,2,1)$,
$$|C| = (3^1 \cdot 1!)(2^2 \cdot 2!)(1^1 \cdot 1!) = 24.$$
There is exactly one permutation of the empty set, the identity, so the statistic on the empty partition is $1$.
The centralizer (or commutant, equivalently normalizer) of an element $g$ of a group $G$ is the set of elements of $G$ that commute with $g$:
$$C_g = \{h \in G : hgh^{-1} = g\}.$$
Its size thus depends only on the conjugacy class of $g$.
The conjugacy classes of a permutation is determined by its cycle type, and the size of the centralizer of a permutation with cycle type $\lambda = (1^{a_1},2^{a_2},\dots)$ is
$$|C| = \Pi j^{a_j} a_j!$$
For example, for any permutation with cycle type $\lambda = (3,2,2,1)$,
$$|C| = (3^1 \cdot 1!)(2^2 \cdot 2!)(1^1 \cdot 1!) = 24.$$
There is exactly one permutation of the empty set, the identity, so the statistic on the empty partition is $1$.
Code
def statistic(p): return p.centralizer_size()
Created
May 04, 2014 at 23:41 by Lahiru Kariyawasam
Updated
Oct 29, 2017 at 16:33 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!