Identifier
-
Mp00251:
Graphs
—clique sizes⟶
Integer partitions
St000185: Integer partitions ⟶ ℤ
Values
([],1) => [1] => 0
([],2) => [1,1] => 1
([(0,1)],2) => [2] => 0
([],3) => [1,1,1] => 3
([(1,2)],3) => [2,1] => 1
([(0,2),(1,2)],3) => [2,2] => 2
([(0,1),(0,2),(1,2)],3) => [3] => 0
([],4) => [1,1,1,1] => 6
([(2,3)],4) => [2,1,1] => 3
([(1,3),(2,3)],4) => [2,2,1] => 4
([(0,3),(1,3),(2,3)],4) => [2,2,2] => 6
([(0,3),(1,2)],4) => [2,2] => 2
([(0,3),(1,2),(2,3)],4) => [2,2,2] => 6
([(1,2),(1,3),(2,3)],4) => [3,1] => 1
([(0,3),(1,2),(1,3),(2,3)],4) => [3,2] => 2
([(0,2),(0,3),(1,2),(1,3)],4) => [2,2,2,2] => 12
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [3,3] => 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [4] => 0
([],5) => [1,1,1,1,1] => 10
([(3,4)],5) => [2,1,1,1] => 6
([(2,4),(3,4)],5) => [2,2,1,1] => 7
([(1,4),(2,4),(3,4)],5) => [2,2,2,1] => 9
([(0,4),(1,4),(2,4),(3,4)],5) => [2,2,2,2] => 12
([(1,4),(2,3)],5) => [2,2,1] => 4
([(1,4),(2,3),(3,4)],5) => [2,2,2,1] => 9
([(0,1),(2,4),(3,4)],5) => [2,2,2] => 6
([(2,3),(2,4),(3,4)],5) => [3,1,1] => 3
([(0,4),(1,4),(2,3),(3,4)],5) => [2,2,2,2] => 12
([(1,4),(2,3),(2,4),(3,4)],5) => [3,2,1] => 4
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => [3,2,2] => 6
([(1,3),(1,4),(2,3),(2,4)],5) => [2,2,2,2,1] => 16
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => [2,2,2,2,2] => 20
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [3,3,1] => 5
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [3,2,2] => 6
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [3,3,2] => 7
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => [2,2,2,2,2,2] => 30
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [3,3,3] => 9
([(0,4),(1,3),(2,3),(2,4)],5) => [2,2,2,2] => 12
([(0,1),(2,3),(2,4),(3,4)],5) => [3,2] => 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => [3,2,2] => 6
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => [3,3] => 3
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,2,2,2] => 20
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [3,2,2,2] => 12
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => [3,3,3] => 9
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => [3,3,2] => 7
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [4,1] => 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [4,2] => 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [4,3] => 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => [3,3,2,2] => 13
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => [3,3,3,3] => 18
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [4,4] => 4
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [5] => 0
([],6) => [1,1,1,1,1,1] => 15
([(4,5)],6) => [2,1,1,1,1] => 10
([(3,5),(4,5)],6) => [2,2,1,1,1] => 11
([(2,5),(3,5),(4,5)],6) => [2,2,2,1,1] => 13
([(1,5),(2,5),(3,5),(4,5)],6) => [2,2,2,2,1] => 16
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => [2,2,2,2,2] => 20
([(2,5),(3,4)],6) => [2,2,1,1] => 7
([(2,5),(3,4),(4,5)],6) => [2,2,2,1,1] => 13
([(1,2),(3,5),(4,5)],6) => [2,2,2,1] => 9
([(3,4),(3,5),(4,5)],6) => [3,1,1,1] => 6
([(1,5),(2,5),(3,4),(4,5)],6) => [2,2,2,2,1] => 16
([(0,1),(2,5),(3,5),(4,5)],6) => [2,2,2,2] => 12
([(2,5),(3,4),(3,5),(4,5)],6) => [3,2,1,1] => 7
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => [2,2,2,2,2] => 20
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [3,2,2,1] => 9
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [3,2,2,2] => 12
([(2,4),(2,5),(3,4),(3,5)],6) => [2,2,2,2,1,1] => 21
([(0,5),(1,5),(2,4),(3,4)],6) => [2,2,2,2] => 12
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [2,2,2,2,2,1] => 25
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [2,2,2,2,2] => 20
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,1,1] => 8
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [3,2,2,1] => 9
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => [2,2,2,2,2] => 20
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [2,2,2,2,2,2] => 30
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,2,1] => 10
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [3,2,2,2] => 12
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,2,2] => 13
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => [2,2,2,2,2,2] => 30
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,3,1] => 12
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,2,2] => 13
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,3,2] => 15
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,3,3] => 18
([(0,5),(1,4),(2,3)],6) => [2,2,2] => 6
([(1,5),(2,4),(3,4),(3,5)],6) => [2,2,2,2,1] => 16
([(0,1),(2,5),(3,4),(4,5)],6) => [2,2,2,2] => 12
([(1,2),(3,4),(3,5),(4,5)],6) => [3,2,1] => 4
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [2,2,2,2,2] => 20
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => [3,2,2,1] => 9
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => [3,2,2] => 6
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,2,2,2] => 12
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,3,1] => 5
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,3,2] => 7
([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => [2,2,2,2,2,1] => 25
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => [2,2,2,2,2,2] => 30
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [3,2,2,2,1] => 16
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => [2,2,2,2,2,2] => 30
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [3,3,2,1] => 10
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => [3,2,2,2] => 12
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [3,2,2,2,2] => 20
>>> Load all 667 entries. <<<([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,2,2] => 13
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,3,1] => 12
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,3,2] => 15
([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => [2,2,2,2,2] => 20
([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => [2,2,2,2,2] => 20
([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => [3,2,2] => 6
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => [2,2,2,2,2,2] => 30
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6) => [3,2,2,2] => 12
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6) => [3,2,2,2] => 12
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,2] => 7
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => [3,2,2,2] => 12
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6) => [3,2,2,2,2] => 20
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6) => [3,3,2,2] => 13
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,2] => 7
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,3] => 9
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => 3
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [3,3,2,2] => 13
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,2,1] => 4
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,2,2] => 6
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,3,2] => 15
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [3,3,3,2] => 15
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,2,2,2] => 21
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,3,3] => 18
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [3,3,2,2,2] => 21
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,3,1] => 5
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,2,2] => 6
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,3,2] => 7
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,3,3] => 9
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [3,3,2,2,1] => 17
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [3,3,2,2,2] => 21
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [3,3,3,3,1] => 22
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [3,3,3,3,2] => 26
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) => [2,2,2,2,2,2] => 30
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => [3,2,2,2,2] => 20
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [3,2,2,2,2] => 20
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [3,3,2,2] => 13
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => [3,2,2,2,2] => 20
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,2,2,2] => 21
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [3,3,3,2] => 15
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [3,3,2,2] => 13
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [3,3,3,3] => 18
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => [3,3,2,2,2] => 21
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,3,2,2] => 23
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,3,3,3] => 30
([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,3,3,2] => 26
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,4,1] => 6
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,3,2] => 7
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,4,2] => 8
([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,3,2,2] => 23
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [3,3,3,3] => 18
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,3,3] => 9
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,4,3] => 10
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,4,4] => 12
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => [3,3] => 3
([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6) => [3,3,2,2] => 13
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6) => [3,3,2] => 7
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,2] => 2
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [3,3,3] => 9
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,2,2] => 6
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,3] => 3
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6) => [3,3,2,2] => 13
([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => [3,3,3,2] => 15
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,3,2] => 7
([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,3,3] => 18
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,2,2,2] => 12
([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,3,3] => 9
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [3,3,3,3] => 18
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,4] => 4
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [3,3,2,2,2] => 21
([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,3,3,2,2] => 23
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,3,3,3,3] => 30
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6) => [3,3,2,2,2] => 21
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,3,3,2] => 26
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [3,3,3,3,3] => 30
([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,3,3,3] => 18
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,4,4] => 12
([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [4,3,2,2] => 13
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,3,3] => 9
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,4,3] => 10
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,4,2] => 8
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,1] => 1
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,2] => 2
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,3] => 3
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,4] => 4
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [4,4,2,2] => 14
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,3,3,2] => 15
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [4,4,3,3] => 19
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,4,4,4] => 24
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,5] => 5
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6] => 0
([],7) => [1,1,1,1,1,1,1] => 21
([(5,6)],7) => [2,1,1,1,1,1] => 15
([(4,6),(5,6)],7) => [2,2,1,1,1,1] => 16
([(3,6),(4,6),(5,6)],7) => [2,2,2,1,1,1] => 18
([(2,6),(3,6),(4,6),(5,6)],7) => [2,2,2,2,1,1] => 21
([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => [2,2,2,2,2,1] => 25
([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => [2,2,2,2,2,2] => 30
([(3,6),(4,5)],7) => [2,2,1,1,1] => 11
([(3,6),(4,5),(5,6)],7) => [2,2,2,1,1,1] => 18
([(2,3),(4,6),(5,6)],7) => [2,2,2,1,1] => 13
([(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => 10
([(2,6),(3,6),(4,5),(5,6)],7) => [2,2,2,2,1,1] => 21
([(1,2),(3,6),(4,6),(5,6)],7) => [2,2,2,2,1] => 16
([(3,6),(4,5),(4,6),(5,6)],7) => [3,2,1,1,1] => 11
([(1,6),(2,6),(3,6),(4,5),(5,6)],7) => [2,2,2,2,2,1] => 25
([(0,1),(2,6),(3,6),(4,6),(5,6)],7) => [2,2,2,2,2] => 20
([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,2,2,1,1] => 13
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => [2,2,2,2,2,2] => 30
([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,2,2,2,1] => 16
([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,2,2,2,2] => 20
([(1,6),(2,6),(3,5),(4,5)],7) => [2,2,2,2,1] => 16
([(1,6),(2,6),(3,4),(4,5),(5,6)],7) => [2,2,2,2,2,1] => 25
([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => [2,2,2,2,2] => 20
([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,1,1,1] => 12
([(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [3,2,2,1,1] => 13
([(1,6),(2,6),(3,5),(4,5),(5,6)],7) => [2,2,2,2,2,1] => 25
([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => [2,2,2,2,2,2] => 30
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,2,1,1] => 14
([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [3,2,2,2,1] => 16
([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => [2,2,2,2,2,2] => 30
([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,2,2,1] => 17
([(0,6),(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [3,2,2,2,2] => 20
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,2,2,2] => 21
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => [2,2,2,2,2,2] => 30
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3,1,1] => 16
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,2,2,1] => 17
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6),(5,6)],7) => [3,2,2,2,2] => 20
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3,2,1] => 19
([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,2,2,2] => 21
([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3,2,2] => 23
([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3,3,1] => 22
([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3,2,2] => 23
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3,3,2] => 26
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3,3,3] => 30
([(1,6),(2,5),(3,4)],7) => [2,2,2,1] => 9
([(2,6),(3,5),(4,5),(4,6)],7) => [2,2,2,2,1,1] => 21
([(1,2),(3,6),(4,5),(5,6)],7) => [2,2,2,2,1] => 16
([(0,3),(1,2),(4,6),(5,6)],7) => [2,2,2,2] => 12
([(2,3),(4,5),(4,6),(5,6)],7) => [3,2,1,1] => 7
([(1,6),(2,5),(3,4),(4,6),(5,6)],7) => [2,2,2,2,2,1] => 25
([(0,1),(2,6),(3,6),(4,5),(5,6)],7) => [2,2,2,2,2] => 20
([(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [3,2,2,1,1] => 13
([(1,2),(3,6),(4,5),(4,6),(5,6)],7) => [3,2,2,1] => 9
([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => [2,2,2,2,2,2] => 30
([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [3,2,2,2,1] => 16
([(0,1),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,2,2,2] => 12
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [3,3,1,1] => 8
([(0,6),(1,6),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => [3,2,2,2,2] => 20
([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [3,3,2,1] => 10
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [3,3,2,2] => 13
([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7) => [2,2,2,2,2,2] => 30
([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [3,3,2,1,1] => 14
([(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => [3,2,2,2,1] => 16
([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6),(5,6)],7) => [3,2,2,2,2] => 20
([(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,2,2,1] => 17
([(0,6),(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => [3,2,2,2,2] => 20
([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3,1,1] => 16
([(0,6),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,2,2,2] => 21
([(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3,2,1] => 19
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3,2,2] => 23
([(1,6),(2,5),(3,4),(3,5),(4,6)],7) => [2,2,2,2,2,1] => 25
([(1,2),(3,5),(3,6),(4,5),(4,6)],7) => [2,2,2,2,2,1] => 25
([(0,6),(1,5),(2,4),(3,4),(5,6)],7) => [2,2,2,2,2] => 20
([(1,6),(2,6),(3,4),(3,5),(4,5)],7) => [3,2,2,1] => 9
([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7) => [2,2,2,2,2,2] => 30
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [2,2,2,2,2,2] => 30
([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6)],7) => [3,2,2,2,1] => 16
([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7) => [3,2,2,2] => 12
([(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => [3,2,2,2,1] => 16
([(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,2,1] => 10
([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => [2,2,2,2,2,2] => 30
([(0,1),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [3,2,2,2] => 12
([(1,5),(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [3,2,2,2,1] => 16
([(0,5),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6)],7) => [3,2,2,2,2] => 20
([(1,4),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [3,3,2,2,1] => 17
([(0,6),(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => [3,2,2,2,2] => 20
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,2,2] => 13
([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,2,1] => 10
([(0,6),(1,5),(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [3,2,2,2,2] => 20
([(0,4),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [3,3,2,2,2] => 21
([(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3,1] => 12
([(0,6),(1,5),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,2,2] => 13
([(0,6),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3,2] => 15
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5)],7) => [3,2,2,2] => 12
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => 6
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7) => [3,2,2,2,2] => 20
([(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [3,3,2,2,1] => 17
([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,2,1,1] => 7
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [3,3,2,2,2] => 21
([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,2,2,1] => 9
([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,2,2,2] => 12
([(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3,2,1] => 19
([(0,6),(1,5),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,2,2,2] => 21
([(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [3,3,3,2,1] => 19
([(0,6),(1,5),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,2,2,2] => 21
([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3,2,2] => 23
([(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3,3,1] => 22
([(0,6),(1,5),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3,2,2] => 23
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3,3,2] => 26
([(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6)],7) => [3,2,2,2,2] => 20
([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => [3,3,2,2,2] => 21
([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3,2] => 15
([(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6),(5,6)],7) => [3,3,2,2] => 13
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [3,3,3,2,2] => 23
([(0,5),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3,2] => 15
([(0,1),(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3,3] => 18
([(0,6),(1,6),(2,3),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [3,3,2,2,2] => 21
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,3,1,1] => 8
([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,2,2,1] => 9
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [3,3,3,2,2] => 23
([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,3,2,1] => 10
([(0,6),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,2,2,2] => 12
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,3,2,2] => 13
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3,3,2] => 26
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [3,3,3,3,2] => 26
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3,3,3] => 30
([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,3,3,1] => 12
([(0,6),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,3,2,2] => 13
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,3,3,2] => 15
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,3,3,3] => 18
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [3,3,2,2,1,1] => 22
([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [3,3,2,2,1] => 17
([(0,6),(1,2),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,2,2,2] => 21
([(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [3,3,3,2,1] => 19
([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [3,3,2,2,1] => 17
([(0,6),(1,4),(2,3),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,2,2,2] => 21
([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [3,3,3,3,1] => 22
([(0,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [3,3,3,2,2] => 23
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [3,3,2,2,2] => 21
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [3,3,3,3,2] => 26
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7) => [2,2,2,2,2,2] => 30
([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(5,6)],7) => [3,3,2,2] => 13
([(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(5,6)],7) => [3,2,2,2,2] => 20
([(0,4),(1,4),(2,5),(3,5),(3,6),(4,6),(5,6)],7) => [3,2,2,2,2] => 20
([(0,4),(1,4),(1,6),(2,5),(2,6),(3,5),(3,6),(5,6)],7) => [3,3,2,2,2] => 21
([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [3,3,2,2,2] => 21
([(0,5),(1,4),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [3,3,2,2] => 13
([(0,5),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [3,3,3,2] => 15
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [3,3,3,3] => 18
([(0,3),(1,5),(1,6),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => [3,3,3,2,2] => 23
([(0,5),(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [3,3,3,2,2] => 23
([(0,5),(1,5),(1,6),(2,3),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3,3,2] => 26
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [3,3,3,3,2] => 26
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [3,3,3,2,2] => 23
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3,3,3] => 30
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,1,1] => 9
([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,2,1] => 11
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,3,2,2] => 13
([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,2,2] => 14
([(0,5),(1,3),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3,2,2] => 23
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(5,6)],7) => [3,3,2,2,2] => 21
([(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,3,2,1] => 10
([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [3,3,3,3,1] => 22
([(0,6),(1,5),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,2,2,2] => 12
([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,3,3,1] => 12
([(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,3,2,2] => 13
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [3,3,3,3,2] => 26
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,3,3,2] => 15
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [3,3,3,2,2] => 23
([(0,6),(1,5),(2,4),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3,2,2] => 23
([(0,5),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3,3,2] => 26
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3,3,3] => 30
([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,3,1] => 13
([(0,6),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,2,2] => 14
([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,3,2] => 16
([(0,6),(1,5),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,3,3,2] => 15
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,3,3,2] => 15
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [3,3,3,3,3] => 30
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,3,3,3] => 18
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,3,3] => 19
([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,4,1] => 15
([(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,3,2] => 16
([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,4,2] => 18
([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,3,3,3] => 18
([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,3,3] => 19
([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,4,3] => 21
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,4,4] => 24
([(0,1),(2,5),(3,4),(4,6),(5,6)],7) => [2,2,2,2,2] => 20
([(0,3),(1,2),(4,5),(4,6),(5,6)],7) => [3,2,2] => 6
([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => [2,2,2,2,2,2] => 30
([(0,1),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => [3,2,2,2] => 12
([(0,5),(1,4),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => [3,2,2,2,2] => 20
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [3,3,2] => 7
([(0,5),(1,4),(1,6),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => [3,3,2,2] => 13
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => [3,3,3] => 9
([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => [2,2,2,2,2,2] => 30
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5)],7) => [2,2,2,2,2,2] => 30
([(0,6),(1,5),(2,3),(2,4),(3,4),(5,6)],7) => [3,2,2,2] => 12
([(0,4),(1,3),(2,5),(2,6),(3,5),(4,6),(5,6)],7) => [3,2,2,2,2] => 20
([(0,1),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [3,2,2,2,2] => 20
([(0,6),(1,4),(2,3),(2,5),(3,5),(4,6),(5,6)],7) => [3,2,2,2,2] => 20
([(0,5),(1,4),(1,5),(2,3),(2,6),(3,6),(4,6)],7) => [3,2,2,2,2] => 20
([(0,5),(1,4),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => [3,2,2,2,2] => 20
([(0,4),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => [3,3,2,2] => 13
([(0,4),(1,3),(2,5),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,2,2,2] => 21
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3,2] => 15
([(0,5),(1,4),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,2,2] => 13
([(0,1),(0,6),(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [3,3,2,2,2] => 21
([(0,3),(1,5),(1,6),(2,4),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3,2,2] => 23
([(0,5),(1,2),(1,6),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3,2] => 15
([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3,3] => 18
([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7) => [3,3,1] => 5
([(1,3),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => [3,3,2,2,1] => 17
([(0,1),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,2,2] => 13
([(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7) => [3,3,2,1] => 10
([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7) => [3,3,2] => 7
([(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,2,1] => 4
([(0,6),(1,2),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [3,3,2,2,2] => 21
([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7) => [3,3,2,2] => 13
([(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [3,3,3,1] => 12
([(1,2),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,2,2,1] => 9
([(0,1),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,2,2] => 6
([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [3,3,3,2] => 15
([(0,6),(1,2),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,2,2,2] => 12
([(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,3,1] => 5
([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,3,2] => 7
([(0,5),(1,4),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [3,3,2,2,2] => 21
([(0,4),(1,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3,2,2] => 23
([(0,5),(1,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3,2,2] => 23
([(0,3),(1,5),(1,6),(2,4),(2,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3,2,2] => 23
([(0,4),(1,5),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3,3,2] => 26
([(0,5),(1,4),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3,3,2] => 26
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3,3,3] => 30
([(1,5),(1,6),(2,3),(2,4),(3,4),(3,6),(4,5),(5,6)],7) => [3,3,2,2,1] => 17
([(0,6),(1,3),(1,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [3,3,2,2,2] => 21
([(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [3,3,3,2,1] => 19
([(1,4),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,3,2,1] => 10
([(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3,3,1] => 22
([(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,2,2,2,1] => 16
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [3,3,3,2,2] => 23
([(0,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,3,2,2] => 13
([(0,6),(1,3),(1,6),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3,3,2] => 26
([(1,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,3,3,1] => 12
([(0,6),(1,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,3,3,2] => 15
([(0,1),(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6)],7) => [3,3,2,2] => 13
([(0,1),(0,6),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(5,6)],7) => [3,3,2,2,2] => 21
([(0,5),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [3,3,3,2] => 15
([(0,5),(1,2),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,2,2,2] => 12
([(0,1),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,3,2] => 7
([(0,6),(1,2),(1,5),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3,2] => 15
([(0,1),(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6),(5,6)],7) => [3,3,3] => 9
([(0,1),(0,6),(1,6),(2,3),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [3,3,3,2,2] => 23
([(0,2),(1,5),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,3,2,2] => 13
([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [3,3,3,3] => 18
([(0,5),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,3,2] => 7
([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,3,3] => 9
([(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [3,3,3,2,2] => 23
([(0,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,3,3,2] => 15
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3,3,3] => 30
([(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,3,3,2] => 15
([(0,4),(0,6),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,3,3,3] => 18
([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [3,3,3,3,1] => 22
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [3,3,3,3,2] => 26
([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,1] => 6
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,2] => 8
([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,3] => 10
([(0,6),(1,2),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [3,3,2,2,2] => 21
([(0,2),(1,5),(1,6),(2,4),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [3,3,3,2,2] => 23
([(0,5),(1,3),(1,4),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [3,3,2,2,2] => 21
([(0,1),(0,5),(1,4),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [3,3,2,2,2] => 21
([(0,5),(1,4),(2,3),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [3,3,3,2,2] => 23
([(0,4),(0,6),(1,3),(1,6),(2,3),(2,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3,2,2] => 23
([(0,5),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [3,3,3,3,2] => 26
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [3,3,3,3,3] => 30
([(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,2,1] => 11
([(0,6),(1,5),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,3,2,2] => 13
([(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,3,3,1] => 12
([(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [4,3,2,2,1] => 17
([(0,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,2,2] => 14
([(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,3,1] => 13
([(0,6),(1,3),(1,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,3,3,2] => 15
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,3,2] => 16
([(0,5),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,3,3,2] => 15
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,3,3,3] => 18
([(0,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,3,2] => 16
([(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,3,2] => 16
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,3,3,3] => 18
([(0,5),(0,6),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,3,3] => 19
([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,4,1] => 15
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,4,2] => 18
([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,4,3] => 21
([(0,1),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [3,3,2,2,2] => 21
([(0,1),(0,6),(1,6),(2,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => [3,3,2,2,2] => 21
([(0,1),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [3,3,3,3,2] => 26
([(0,1),(0,6),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3,2,2] => 23
([(0,1),(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [3,3,3,3,3] => 30
([(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5)],7) => [3,3,2,2,2] => 21
([(0,4),(0,6),(1,3),(1,5),(2,5),(2,6),(3,4),(3,5),(4,6)],7) => [3,3,2,2,2] => 21
([(0,3),(0,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(4,6),(5,6)],7) => [3,3,3,2,2] => 23
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3,2,2] => 23
([(0,4),(0,5),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(5,6)],7) => [3,3,3,2,2] => 23
([(0,1),(1,4),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,3,2,2] => 13
([(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3,3,2] => 26
([(0,3),(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3,3,3] => 30
([(0,4),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [4,3,3,2] => 15
([(0,4),(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [4,3,2,2] => 13
([(0,4),(0,6),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [4,3,3,3] => 18
([(0,6),(1,4),(1,5),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => [3,3,3,2,2] => 23
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => [3,3,3,2] => 15
([(0,4),(1,3),(1,6),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => [3,3,3,3,2] => 26
([(0,3),(0,6),(1,3),(1,5),(2,4),(2,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3,2,2] => 23
([(0,6),(1,3),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [4,3,2,2] => 13
([(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [3,3,3,3,2] => 26
([(0,6),(1,4),(1,6),(2,3),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [3,3,3,3,2] => 26
([(0,4),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,6),(5,6)],7) => [3,3,3,3,2] => 26
([(0,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [4,3,3,2] => 15
([(0,5),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [4,3,3,2] => 15
([(0,4),(0,5),(1,4),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3,3,3] => 30
([(0,4),(0,6),(1,2),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,3,3,3] => 18
([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => [3,3,3,2,2] => 23
([(0,1),(0,5),(1,5),(2,3),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3,3] => 18
([(0,2),(1,5),(1,6),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,3,2,2] => 13
([(0,1),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,2] => 8
([(0,1),(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3,3] => 18
([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3,3,3] => 30
([(0,1),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,2,2] => 14
([(0,1),(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,3,3] => 9
([(0,1),(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,3] => 10
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(3,4),(3,6),(4,5),(5,6)],7) => [3,3,3,2,2] => 23
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(5,6)],7) => [3,3,3,2,2] => 23
([(0,6),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [4,3,2,2] => 13
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(4,5),(5,6)],7) => [3,3,3,3,2] => 26
([(0,4),(0,6),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3,3,3] => 30
([(0,5),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [4,3,3,2] => 15
([(0,4),(0,6),(1,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,3,3,3] => 18
([(0,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,3,2] => 16
([(0,4),(0,5),(1,2),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,3,3,3] => 18
([(0,3),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,3,3] => 19
([(0,5),(0,6),(1,2),(1,4),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7) => [3,3,3,3,3] => 30
([(0,4),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,2] => 8
([(0,4),(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,3,3,3] => 18
([(0,4),(0,6),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,3] => 10
([(0,1),(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,4] => 12
([(0,5),(0,6),(1,2),(1,3),(2,3),(4,5),(4,6)],7) => [3,2,2,2,2] => 20
([(0,3),(1,3),(1,4),(2,5),(2,6),(4,5),(4,6),(5,6)],7) => [3,3,2,2,2] => 21
([(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,2,2] => 6
([(0,6),(1,2),(1,4),(2,4),(3,5),(3,6),(4,5),(5,6)],7) => [3,3,2,2] => 13
([(0,1),(0,2),(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3] => 9
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5)],7) => [3,3,2,2,2] => 21
([(0,2),(1,2),(1,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,2,2,2] => 12
([(0,1),(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [3,3,3,2] => 15
([(0,5),(1,3),(1,4),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [3,3,3,2] => 15
([(0,5),(1,5),(2,3),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [4,2,2,2] => 12
([(0,3),(0,6),(1,3),(1,6),(2,4),(2,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3,3] => 18
([(0,5),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [4,3,2] => 7
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [4,3,3] => 9
([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => 3
([(0,6),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,2,2] => 14
([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,2,1] => 4
([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,2,2] => 6
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,3,3,3] => 18
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,3,2] => 16
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,3,3] => 19
([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,3,1] => 5
([(0,6),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,2,2] => 6
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,3,2] => 7
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,3,3] => 9
([(0,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,4,2] => 18
([(0,4),(0,5),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,3,3] => 19
([(0,3),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,4,3] => 21
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,4,2] => 18
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,3,3] => 19
([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,4,3] => 21
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,4,4] => 24
([(0,5),(0,6),(1,3),(1,4),(2,3),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => [3,3,3,3,2] => 26
([(0,4),(0,5),(1,3),(1,6),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [3,3,3,3,2] => 26
([(1,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,3,3,2,1] => 19
([(0,6),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [3,3,3,3,2] => 26
([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [4,4,2,2,1] => 18
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => [3,3,3,3] => 18
([(0,6),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [4,4,2,2] => 14
([(0,5),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [4,4,3,2] => 16
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [4,4,3,3] => 19
([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,4,1] => 6
([(0,6),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,3,2] => 7
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,4,2] => 8
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,3,3] => 9
([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,4,3] => 10
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,4,4] => 12
([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(4,5),(5,6)],7) => [3,3,3,2,2] => 23
([(0,4),(0,6),(1,2),(1,3),(1,5),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [3,3,3,3,2] => 26
([(0,4),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,4,2] => 18
([(0,4),(0,6),(1,3),(1,5),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,3,3] => 19
([(0,4),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,4,3] => 21
([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => [3,3,3,3,3] => 30
([(0,3),(0,4),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,2,2] => 14
([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,3,3] => 19
([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,4,4] => 24
([(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3,3,3] => 30
([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,5,1] => 7
([(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,4,2] => 8
([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,5,2] => 9
([(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,3,3] => 9
([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,4,3] => 10
([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,5,3] => 11
([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,4,3] => 21
([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,4,4] => 24
([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,4,4] => 12
([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,5,4] => 13
([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,5,5] => 15
([(0,4),(0,5),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5)],7) => [3,3,3,2] => 15
([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,3] => 3
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3,3] => 18
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [4,3,2] => 7
([(0,4),(0,5),(1,2),(1,3),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [4,3,3] => 9
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [4,4] => 4
([(0,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,3,3,2] => 15
([(0,3),(0,6),(1,3),(1,4),(1,5),(2,4),(2,5),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [4,3,3,2] => 15
([(0,4),(0,5),(1,2),(1,6),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,3,3,3] => 18
([(0,2),(1,4),(1,5),(1,6),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,3,2] => 16
([(0,2),(0,6),(1,4),(1,5),(1,6),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,3,3] => 19
([(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,4),(3,6),(4,5),(5,6)],7) => [3,3,3,2,2] => 23
([(0,4),(0,6),(1,2),(1,3),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6),(5,6)],7) => [3,3,3,3,2] => 26
([(0,3),(0,4),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7) => [4,3,2,2] => 13
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3,3,2] => 26
([(0,3),(0,6),(1,2),(1,5),(2,4),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,3,3,3] => 30
([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [4,3,3] => 9
([(0,1),(0,2),(0,6),(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,3,3,2] => 15
([(0,3),(0,5),(1,2),(1,4),(1,6),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,3,3,3] => 18
([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,3] => 10
([(0,1),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,2,2] => 14
([(0,1),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,2] => 2
([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,3] => 10
([(0,1),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,2,2] => 6
([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,3] => 3
([(0,1),(0,3),(0,6),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [4,3,3,3] => 18
([(0,3),(0,4),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,3] => 10
([(0,2),(0,6),(1,3),(1,4),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,3,3] => 19
([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,4] => 12
([(0,1),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [4,4,3,2] => 16
([(0,1),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,3,2] => 7
([(0,1),(0,6),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,2,2,2] => 12
([(0,1),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,3,3] => 9
([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [4,4,3,3] => 19
([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,4] => 4
([(0,2),(0,6),(1,3),(1,4),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [4,3,3,2] => 15
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,3,3] => 19
([(0,1),(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [3,3,3,3,3] => 30
([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(5,6)],7) => [4,3,3,3] => 18
([(0,2),(0,3),(0,4),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,3,2] => 16
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,4,3] => 21
([(0,3),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,4,2] => 8
([(0,3),(0,6),(1,2),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,4,3] => 21
([(0,1),(0,6),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,3,2,2] => 13
([(0,3),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,4,3] => 10
([(0,3),(0,5),(0,6),(1,2),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,4,4] => 24
([(0,3),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,4,4] => 12
([(0,1),(0,2),(0,3),(0,4),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,4,3,3] => 19
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [4,4,4,4] => 24
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,5] => 5
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,5,5] => 15
([(0,1),(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,3,3,2] => 15
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,4,4] => 12
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,5,4] => 13
([(0,2),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,4,2,2] => 14
([(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,4,3] => 10
([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,5,3] => 11
([(0,6),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,5,2] => 9
([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1] => 1
([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,2] => 2
([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,3] => 3
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,4] => 4
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,5] => 5
([(0,1),(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,4,3,2] => 16
([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,6] => 6
([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7] => 0
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Generating function
click to show known generating functions
Search the OEIS for these generating functions
Search the Online Encyclopedia of Integer
Sequences for the coefficients of a few of the
first generating functions, in the case at hand:
1,1 1,1,1,1 1,1,2,2,1,0,3,0,0,0,0,0,1 1,1,2,3,3,1,5,3,0,4,1,0,4,1,0,0,1,0,1,0,2,0,0,0,0,0,0,0,0,0,1
$F_{1} = 1$
$F_{2} = 1 + q$
$F_{3} = 1 + q + q^{2} + q^{3}$
$F_{4} = 1 + q + 2\ q^{2} + 2\ q^{3} + q^{4} + 3\ q^{6} + q^{12}$
$F_{5} = 1 + q + 2\ q^{2} + 3\ q^{3} + 3\ q^{4} + q^{5} + 5\ q^{6} + 3\ q^{7} + 4\ q^{9} + q^{10} + 4\ q^{12} + q^{13} + q^{16} + q^{18} + 2\ q^{20} + q^{30}$
Description
The weighted size of a partition.
Let $\lambda = (\lambda_0\geq\lambda_1 \geq \dots\geq\lambda_m)$ be an integer partition. Then the weighted size of $\lambda$ is
$$\sum_{i=0}^m i \cdot \lambda_i.$$
This is also the sum of the leg lengths of the cells in $\lambda$, or
$$ \sum_i \binom{\lambda^{\prime}_i}{2} $$
where $\lambda^{\prime}$ is the conjugate partition of $\lambda$.
This is the minimal number of inversions a permutation with the given shape can have, see [1, cor.2.2].
This is also the smallest possible sum of the entries of a semistandard tableau (allowing 0 as a part) of shape $\lambda=(\lambda_0,\lambda_1,\ldots,\lambda_m)$, obtained uniquely by placing $i-1$ in all the cells of the $i$th row of $\lambda$, see [2, eq.7.103].
Let $\lambda = (\lambda_0\geq\lambda_1 \geq \dots\geq\lambda_m)$ be an integer partition. Then the weighted size of $\lambda$ is
$$\sum_{i=0}^m i \cdot \lambda_i.$$
This is also the sum of the leg lengths of the cells in $\lambda$, or
$$ \sum_i \binom{\lambda^{\prime}_i}{2} $$
where $\lambda^{\prime}$ is the conjugate partition of $\lambda$.
This is the minimal number of inversions a permutation with the given shape can have, see [1, cor.2.2].
This is also the smallest possible sum of the entries of a semistandard tableau (allowing 0 as a part) of shape $\lambda=(\lambda_0,\lambda_1,\ldots,\lambda_m)$, obtained uniquely by placing $i-1$ in all the cells of the $i$th row of $\lambda$, see [2, eq.7.103].
Map
clique sizes
Description
The integer partition of the sizes of the maximal cliques of a graph.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!