Identifier
-
Mp00203:
Graphs
—cone⟶
Graphs
Mp00275: Graphs —to edge-partition of connected components⟶ Integer partitions
St000185: Integer partitions ⟶ ℤ
Values
([],1) => ([(0,1)],2) => [1] => 0
([],2) => ([(0,2),(1,2)],3) => [2] => 0
([(0,1)],2) => ([(0,1),(0,2),(1,2)],3) => [3] => 0
([],3) => ([(0,3),(1,3),(2,3)],4) => [3] => 0
([(1,2)],3) => ([(0,3),(1,2),(1,3),(2,3)],4) => [4] => 0
([(0,2),(1,2)],3) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [5] => 0
([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [6] => 0
([],4) => ([(0,4),(1,4),(2,4),(3,4)],5) => [4] => 0
([(2,3)],4) => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => [5] => 0
([(1,3),(2,3)],4) => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [6] => 0
([(0,3),(1,3),(2,3)],4) => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [7] => 0
([(0,3),(1,2)],4) => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => [6] => 0
([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => [7] => 0
([(1,2),(1,3),(2,3)],4) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [7] => 0
([(0,3),(1,2),(1,3),(2,3)],4) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [8] => 0
([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => [8] => 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [9] => 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [10] => 0
([],5) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => [5] => 0
([(3,4)],5) => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [6] => 0
([(2,4),(3,4)],5) => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [7] => 0
([(1,4),(2,4),(3,4)],5) => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [8] => 0
([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [9] => 0
([(1,4),(2,3)],5) => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [7] => 0
([(1,4),(2,3),(3,4)],5) => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => [8] => 0
([(0,1),(2,4),(3,4)],5) => ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [8] => 0
([(2,3),(2,4),(3,4)],5) => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [8] => 0
([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => [9] => 0
([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [9] => 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [10] => 0
([(1,3),(1,4),(2,3),(2,4)],5) => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [9] => 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [10] => 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [10] => 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [10] => 0
([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [9] => 0
([(0,1),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [9] => 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [10] => 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [10] => 0
([],6) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => [6] => 0
([(4,5)],6) => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [7] => 0
([(3,5),(4,5)],6) => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 0
([(2,5),(3,5),(4,5)],6) => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 0
([(1,5),(2,5),(3,5),(4,5)],6) => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 0
([(2,5),(3,4)],6) => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [8] => 0
([(2,5),(3,4),(4,5)],6) => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 0
([(1,2),(3,5),(4,5)],6) => ([(0,6),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 0
([(3,4),(3,5),(4,5)],6) => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 0
([(1,5),(2,5),(3,4),(4,5)],6) => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 0
([(0,1),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 0
([(2,5),(3,4),(3,5),(4,5)],6) => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 0
([(2,4),(2,5),(3,4),(3,5)],6) => ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [10] => 0
([(0,5),(1,5),(2,4),(3,4)],6) => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [10] => 0
([(0,5),(1,4),(2,3)],6) => ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => [9] => 0
([(1,5),(2,4),(3,4),(3,5)],6) => ([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [10] => 0
([(0,1),(2,5),(3,4),(4,5)],6) => ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 0
([(1,2),(3,4),(3,5),(4,5)],6) => ([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 0
([],0) => ([],1) => [] => 0
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The weighted size of a partition.
Let $\lambda = (\lambda_0\geq\lambda_1 \geq \dots\geq\lambda_m)$ be an integer partition. Then the weighted size of $\lambda$ is
$$\sum_{i=0}^m i \cdot \lambda_i.$$
This is also the sum of the leg lengths of the cells in $\lambda$, or
$$ \sum_i \binom{\lambda^{\prime}_i}{2} $$
where $\lambda^{\prime}$ is the conjugate partition of $\lambda$.
This is the minimal number of inversions a permutation with the given shape can have, see [1, cor.2.2].
This is also the smallest possible sum of the entries of a semistandard tableau (allowing 0 as a part) of shape $\lambda=(\lambda_0,\lambda_1,\ldots,\lambda_m)$, obtained uniquely by placing $i-1$ in all the cells of the $i$th row of $\lambda$, see [2, eq.7.103].
Let $\lambda = (\lambda_0\geq\lambda_1 \geq \dots\geq\lambda_m)$ be an integer partition. Then the weighted size of $\lambda$ is
$$\sum_{i=0}^m i \cdot \lambda_i.$$
This is also the sum of the leg lengths of the cells in $\lambda$, or
$$ \sum_i \binom{\lambda^{\prime}_i}{2} $$
where $\lambda^{\prime}$ is the conjugate partition of $\lambda$.
This is the minimal number of inversions a permutation with the given shape can have, see [1, cor.2.2].
This is also the smallest possible sum of the entries of a semistandard tableau (allowing 0 as a part) of shape $\lambda=(\lambda_0,\lambda_1,\ldots,\lambda_m)$, obtained uniquely by placing $i-1$ in all the cells of the $i$th row of $\lambda$, see [2, eq.7.103].
Map
cone
Description
The cone of a graph.
The cone of a graph is obtained by joining a new vertex to all the vertices of the graph. The added vertex is called a universal vertex or a dominating vertex.
The cone of a graph is obtained by joining a new vertex to all the vertices of the graph. The added vertex is called a universal vertex or a dominating vertex.
Map
to edge-partition of connected components
Description
Sends a graph to the partition recording the number of edges in its connected components.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!