Identifier
-
Mp00242:
Dyck paths
—Hessenberg poset⟶
Posets
St000189: Posets ⟶ ℤ
Values
[1,0] => ([],1) => 1
[1,0,1,0] => ([(0,1)],2) => 2
[1,1,0,0] => ([],2) => 2
[1,0,1,0,1,0] => ([(0,2),(2,1)],3) => 3
[1,0,1,1,0,0] => ([(0,2),(1,2)],3) => 3
[1,1,0,0,1,0] => ([(0,1),(0,2)],3) => 3
[1,1,0,1,0,0] => ([(1,2)],3) => 3
[1,1,1,0,0,0] => ([],3) => 3
[1,0,1,0,1,0,1,0] => ([(0,3),(2,1),(3,2)],4) => 4
[1,0,1,0,1,1,0,0] => ([(0,3),(1,3),(3,2)],4) => 4
[1,0,1,1,0,0,1,0] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[1,0,1,1,0,1,0,0] => ([(0,3),(1,2),(2,3)],4) => 4
[1,0,1,1,1,0,0,0] => ([(0,3),(1,3),(2,3)],4) => 4
[1,1,0,0,1,0,1,0] => ([(0,3),(3,1),(3,2)],4) => 4
[1,1,0,0,1,1,0,0] => ([(0,2),(0,3),(1,2),(1,3)],4) => 4
[1,1,0,1,0,0,1,0] => ([(0,2),(0,3),(3,1)],4) => 4
[1,1,0,1,0,1,0,0] => ([(0,3),(1,2),(1,3)],4) => 4
[1,1,0,1,1,0,0,0] => ([(1,3),(2,3)],4) => 4
[1,1,1,0,0,0,1,0] => ([(0,1),(0,2),(0,3)],4) => 4
[1,1,1,0,0,1,0,0] => ([(1,2),(1,3)],4) => 4
[1,1,1,0,1,0,0,0] => ([(2,3)],4) => 4
[1,1,1,1,0,0,0,0] => ([],4) => 4
[1,0,1,0,1,0,1,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,0,1,0,1,0,1,1,0,0] => ([(0,4),(1,4),(2,3),(4,2)],5) => 5
[1,0,1,0,1,1,0,0,1,0] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 5
[1,0,1,0,1,1,0,1,0,0] => ([(0,4),(1,2),(2,4),(4,3)],5) => 5
[1,0,1,0,1,1,1,0,0,0] => ([(0,4),(1,4),(2,4),(4,3)],5) => 5
[1,0,1,1,0,0,1,0,1,0] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 5
[1,0,1,1,0,0,1,1,0,0] => ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5) => 5
[1,0,1,1,0,1,0,0,1,0] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => 5
[1,0,1,1,0,1,0,1,0,0] => ([(0,3),(1,2),(1,3),(2,4),(3,4)],5) => 5
[1,0,1,1,0,1,1,0,0,0] => ([(0,4),(1,3),(2,3),(3,4)],5) => 5
[1,0,1,1,1,0,0,0,1,0] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 5
[1,0,1,1,1,0,0,1,0,0] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => 5
[1,0,1,1,1,0,1,0,0,0] => ([(0,4),(1,4),(2,3),(3,4)],5) => 5
[1,0,1,1,1,1,0,0,0,0] => ([(0,4),(1,4),(2,4),(3,4)],5) => 5
[1,1,0,0,1,0,1,0,1,0] => ([(0,3),(3,4),(4,1),(4,2)],5) => 5
[1,1,0,0,1,0,1,1,0,0] => ([(0,4),(1,4),(4,2),(4,3)],5) => 5
[1,1,0,0,1,1,0,0,1,0] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5) => 5
[1,1,0,0,1,1,0,1,0,0] => ([(0,3),(0,4),(1,2),(2,3),(2,4)],5) => 5
[1,1,0,0,1,1,1,0,0,0] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => 5
[1,1,0,1,0,0,1,0,1,0] => ([(0,4),(3,2),(4,1),(4,3)],5) => 5
[1,1,0,1,0,0,1,1,0,0] => ([(0,3),(0,4),(1,3),(1,4),(4,2)],5) => 5
[1,1,0,1,0,1,0,0,1,0] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5) => 5
[1,1,0,1,0,1,0,1,0,0] => ([(0,3),(0,4),(1,2),(1,3),(2,4)],5) => 5
[1,1,0,1,0,1,1,0,0,0] => ([(0,4),(1,3),(1,4),(2,3),(2,4)],5) => 5
[1,1,0,1,1,0,0,0,1,0] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5) => 5
[1,1,0,1,1,0,0,1,0,0] => ([(0,4),(1,2),(1,3),(3,4)],5) => 5
[1,1,0,1,1,0,1,0,0,0] => ([(0,4),(1,4),(2,3),(2,4)],5) => 5
[1,1,0,1,1,1,0,0,0,0] => ([(1,4),(2,4),(3,4)],5) => 5
[1,1,1,0,0,0,1,0,1,0] => ([(0,4),(4,1),(4,2),(4,3)],5) => 5
[1,1,1,0,0,0,1,1,0,0] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5) => 5
[1,1,1,0,0,1,0,0,1,0] => ([(0,3),(0,4),(4,1),(4,2)],5) => 5
[1,1,1,0,0,1,0,1,0,0] => ([(0,3),(0,4),(1,2),(1,3),(1,4)],5) => 5
[1,1,1,0,0,1,1,0,0,0] => ([(1,3),(1,4),(2,3),(2,4)],5) => 5
[1,1,1,0,1,0,0,0,1,0] => ([(0,2),(0,3),(0,4),(4,1)],5) => 5
[1,1,1,0,1,0,0,1,0,0] => ([(0,4),(1,2),(1,3),(1,4)],5) => 5
[1,1,1,0,1,0,1,0,0,0] => ([(1,4),(2,3),(2,4)],5) => 5
[1,1,1,0,1,1,0,0,0,0] => ([(2,4),(3,4)],5) => 5
[1,1,1,1,0,0,0,0,1,0] => ([(0,1),(0,2),(0,3),(0,4)],5) => 5
[1,1,1,1,0,0,0,1,0,0] => ([(1,2),(1,3),(1,4)],5) => 5
[1,1,1,1,0,0,1,0,0,0] => ([(2,3),(2,4)],5) => 5
[1,1,1,1,0,1,0,0,0,0] => ([(3,4)],5) => 5
[1,1,1,1,1,0,0,0,0,0] => ([],5) => 5
[1,0,1,0,1,0,1,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,0,1,0,1,0,1,0,1,1,0,0] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => 6
[1,0,1,0,1,0,1,1,0,0,1,0] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 6
[1,0,1,0,1,0,1,1,0,1,0,0] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => 6
[1,0,1,0,1,0,1,1,1,0,0,0] => ([(0,5),(1,5),(2,5),(3,4),(5,3)],6) => 6
[1,0,1,0,1,1,0,0,1,0,1,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 6
[1,0,1,0,1,1,0,0,1,1,0,0] => ([(0,4),(0,5),(1,4),(1,5),(3,2),(4,3),(5,3)],6) => 6
[1,0,1,0,1,1,0,1,0,0,1,0] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => 6
[1,0,1,0,1,1,0,1,0,1,0,0] => ([(0,4),(1,2),(1,4),(2,5),(4,5),(5,3)],6) => 6
[1,0,1,0,1,1,0,1,1,0,0,0] => ([(0,5),(1,4),(2,4),(4,5),(5,3)],6) => 6
[1,0,1,0,1,1,1,0,0,0,1,0] => ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6) => 6
[1,0,1,0,1,1,1,0,0,1,0,0] => ([(0,5),(1,2),(1,3),(2,5),(3,5),(5,4)],6) => 6
[1,0,1,0,1,1,1,0,1,0,0,0] => ([(0,5),(1,5),(2,3),(3,5),(5,4)],6) => 6
[1,0,1,0,1,1,1,1,0,0,0,0] => ([(0,5),(1,5),(2,5),(3,5),(5,4)],6) => 6
[1,0,1,1,0,0,1,0,1,0,1,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 6
[1,0,1,1,0,0,1,0,1,1,0,0] => ([(0,4),(1,4),(2,5),(3,5),(4,2),(4,3)],6) => 6
[1,0,1,1,0,0,1,1,0,0,1,0] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => 6
[1,0,1,1,0,0,1,1,0,1,0,0] => ([(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => 6
[1,0,1,1,0,0,1,1,1,0,0,0] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => 6
[1,0,1,1,0,1,0,0,1,0,1,0] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6) => 6
[1,0,1,1,0,1,0,0,1,1,0,0] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(4,2),(5,3)],6) => 6
[1,0,1,1,0,1,0,1,0,0,1,0] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 6
[1,0,1,1,0,1,0,1,0,1,0,0] => ([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6) => 6
[1,0,1,1,0,1,0,1,1,0,0,0] => ([(0,5),(1,3),(1,5),(2,3),(2,5),(3,4),(5,4)],6) => 6
[1,0,1,1,0,1,1,0,0,0,1,0] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 6
[1,0,1,1,0,1,1,0,0,1,0,0] => ([(0,4),(1,2),(1,3),(2,5),(3,4),(4,5)],6) => 6
[1,0,1,1,0,1,1,0,1,0,0,0] => ([(0,5),(1,5),(2,3),(2,5),(3,4),(5,4)],6) => 6
[1,0,1,1,0,1,1,1,0,0,0,0] => ([(0,5),(1,5),(2,5),(3,4),(5,4)],6) => 6
[1,0,1,1,1,0,0,0,1,0,1,0] => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6) => 6
[1,0,1,1,1,0,0,0,1,1,0,0] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6) => 6
[1,0,1,1,1,0,0,1,0,0,1,0] => ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6) => 6
[1,0,1,1,1,0,0,1,0,1,0,0] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6) => 6
[1,0,1,1,1,0,0,1,1,0,0,0] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => 6
[1,0,1,1,1,0,1,0,0,0,1,0] => ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6) => 6
[1,0,1,1,1,0,1,0,0,1,0,0] => ([(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6) => 6
[1,0,1,1,1,0,1,0,1,0,0,0] => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => 6
[1,0,1,1,1,0,1,1,0,0,0,0] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
>>> Load all 196 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of elements in the poset.
Map
Hessenberg poset
Description
The Hessenberg poset of a Dyck path.
Let D be a Dyck path of semilength n, regarded as a subdiagonal path from (0,0) to (n,n), and let \boldsymbol{m}_i be the x-coordinate of the i-th up step.
Then the Hessenberg poset (or natural unit interval order) corresponding to D has elements \{1,\dots,n\} with i < j if j < \boldsymbol{m}_i.
Let D be a Dyck path of semilength n, regarded as a subdiagonal path from (0,0) to (n,n), and let \boldsymbol{m}_i be the x-coordinate of the i-th up step.
Then the Hessenberg poset (or natural unit interval order) corresponding to D has elements \{1,\dots,n\} with i < j if j < \boldsymbol{m}_i.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!