Identifier
Values
([(0,1)],2) => [1] => [1] => 0
([(1,2)],3) => [1] => [1] => 0
([(0,2),(1,2)],3) => [1,1] => [2] => 0
([(0,1),(0,2),(1,2)],3) => [3] => [3] => 0
([(2,3)],4) => [1] => [1] => 0
([(1,3),(2,3)],4) => [1,1] => [2] => 0
([(0,3),(1,3),(2,3)],4) => [1,1,1] => [2,1] => 0
([(0,3),(1,2)],4) => [1,1] => [2] => 0
([(0,3),(1,2),(2,3)],4) => [1,1,1] => [2,1] => 0
([(1,2),(1,3),(2,3)],4) => [3] => [3] => 0
([(0,3),(1,2),(1,3),(2,3)],4) => [3,1] => [3,1] => 0
([(0,2),(0,3),(1,2),(1,3)],4) => [4] => [1,1,1,1] => 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [5] => [5] => 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [6] => [3,3] => 1
([(3,4)],5) => [1] => [1] => 0
([(2,4),(3,4)],5) => [1,1] => [2] => 0
([(1,4),(2,4),(3,4)],5) => [1,1,1] => [2,1] => 0
([(0,4),(1,4),(2,4),(3,4)],5) => [1,1,1,1] => [2,2] => 0
([(1,4),(2,3)],5) => [1,1] => [2] => 0
([(1,4),(2,3),(3,4)],5) => [1,1,1] => [2,1] => 0
([(0,1),(2,4),(3,4)],5) => [1,1,1] => [2,1] => 0
([(2,3),(2,4),(3,4)],5) => [3] => [3] => 0
([(0,4),(1,4),(2,3),(3,4)],5) => [1,1,1,1] => [2,2] => 0
([(1,4),(2,3),(2,4),(3,4)],5) => [3,1] => [3,1] => 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => [3,1,1] => [3,2] => 1
([(1,3),(1,4),(2,3),(2,4)],5) => [4] => [1,1,1,1] => 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => [4,1] => [1,1,1,1,1] => 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [5] => [5] => 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [3,1,1] => [3,2] => 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [5,1] => [5,1] => 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => [6] => [3,3] => 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [7] => [7] => 0
([(0,4),(1,3),(2,3),(2,4)],5) => [1,1,1,1] => [2,2] => 0
([(0,1),(2,3),(2,4),(3,4)],5) => [3,1] => [3,1] => 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => [3,1,1] => [3,2] => 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => [3,3] => [6] => 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [5] => [5] => 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [6] => [3,3] => 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => [7] => [7] => 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => [5,1] => [5,1] => 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [6] => [3,3] => 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [6,1] => [3,3,1] => 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [8] => [1,1,1,1,1,1,1,1] => 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => [7] => [7] => 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => [8] => [1,1,1,1,1,1,1,1] => 0
([(4,5)],6) => [1] => [1] => 0
([(3,5),(4,5)],6) => [1,1] => [2] => 0
([(2,5),(3,5),(4,5)],6) => [1,1,1] => [2,1] => 0
([(1,5),(2,5),(3,5),(4,5)],6) => [1,1,1,1] => [2,2] => 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => [1,1,1,1,1] => [2,2,1] => 1
([(2,5),(3,4)],6) => [1,1] => [2] => 0
([(2,5),(3,4),(4,5)],6) => [1,1,1] => [2,1] => 0
([(1,2),(3,5),(4,5)],6) => [1,1,1] => [2,1] => 0
([(3,4),(3,5),(4,5)],6) => [3] => [3] => 0
([(1,5),(2,5),(3,4),(4,5)],6) => [1,1,1,1] => [2,2] => 0
([(0,1),(2,5),(3,5),(4,5)],6) => [1,1,1,1] => [2,2] => 0
([(2,5),(3,4),(3,5),(4,5)],6) => [3,1] => [3,1] => 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => [1,1,1,1,1] => [2,2,1] => 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1] => [3,2] => 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [3,2,1] => 2
([(2,4),(2,5),(3,4),(3,5)],6) => [4] => [1,1,1,1] => 0
([(0,5),(1,5),(2,4),(3,4)],6) => [1,1,1,1] => [2,2] => 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [4,1] => [1,1,1,1,1] => 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [1,1,1,1,1] => [2,2,1] => 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5] => [5] => 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [3,1,1] => [3,2] => 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => [1,1,1,1,1] => [2,2,1] => 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [4,1,1] => [2,1,1,1,1] => 0
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,1] => [5,1] => 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [3,2,1] => 2
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,1,1] => [5,2] => 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [6] => [3,3] => 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => [4,1,1] => [2,1,1,1,1] => 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [6,1] => [3,3,1] => 3
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [7] => [7] => 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,1,1] => [5,2] => 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [7,1] => [7,1] => 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [8] => [1,1,1,1,1,1,1,1] => 0
([(0,5),(1,4),(2,3)],6) => [1,1,1] => [2,1] => 0
([(1,5),(2,4),(3,4),(3,5)],6) => [1,1,1,1] => [2,2] => 0
([(0,1),(2,5),(3,4),(4,5)],6) => [1,1,1,1] => [2,2] => 0
([(1,2),(3,4),(3,5),(4,5)],6) => [3,1] => [3,1] => 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [1,1,1,1,1] => [2,2,1] => 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => [3,1,1] => [3,2] => 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1] => [3,2] => 1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,1,1,1] => [3,2,1] => 2
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,3] => [6] => 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,3,1] => [6,1] => 0
([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => [5] => [5] => 0
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => [4,1,1] => [2,1,1,1,1] => 0
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [6] => [3,3] => 1
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => [5,1] => [5,1] => 0
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [5,1] => [5,1] => 0
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [3,2,1] => 2
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [6,1] => [3,3,1] => 3
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,1,1] => [5,2] => 1
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => [7] => [7] => 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => [7,1] => [7,1] => 0
([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => [1,1,1,1,1] => [2,2,1] => 1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => [4,1] => [1,1,1,1,1] => 0
([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => [3,1,1] => [3,2] => 1
>>> Load all 388 entries. <<<
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => [4,1,1] => [2,1,1,1,1] => 0
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6) => [3,1,1,1] => [3,2,1] => 2
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [3,2,1] => 2
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,1] => [5,1] => 0
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => [3,1,1,1] => [3,2,1] => 2
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6) => [4,3] => [3,1,1,1,1] => 0
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6) => [5,1,1] => [5,2] => 1
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,1] => [6,1] => 0
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,3] => [5,3] => 3
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6] => [3,3] => 1
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [5,1,1] => [5,2] => 1
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6,1] => [3,3,1] => 3
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6,1,1] => [3,3,2] => 5
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => [7] => [7] => 0
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6) => [8] => [1,1,1,1,1,1,1,1] => 0
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [7,1] => [7,1] => 0
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [7,1] => [7,1] => 0
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [8] => [1,1,1,1,1,1,1,1] => 0
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [7,1] => [7,1] => 0
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [8] => [1,1,1,1,1,1,1,1] => 0
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6,1,1] => [3,3,2] => 5
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => [6,1] => [3,3,1] => 3
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [7] => [7] => 0
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [7,1] => [7,1] => 0
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [8] => [1,1,1,1,1,1,1,1] => 0
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) => [6] => [3,3] => 1
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6) => [7] => [7] => 0
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => [6,1] => [3,3,1] => 3
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [7] => [7] => 0
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [5,1,1] => [5,2] => 1
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => [6,1] => [3,3,1] => 3
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [8] => [1,1,1,1,1,1,1,1] => 0
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [7,1] => [7,1] => 0
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [8] => [1,1,1,1,1,1,1,1] => 0
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6) => [8] => [1,1,1,1,1,1,1,1] => 0
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => [7,1] => [7,1] => 0
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => [3,3] => [6] => 0
([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6) => [5,1,1] => [5,2] => 1
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6) => [3,3,1] => [6,1] => 0
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6,1] => [3,3,1] => 3
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [5,3] => [5,3] => 3
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6,1,1] => [3,3,2] => 5
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6) => [8] => [1,1,1,1,1,1,1,1] => 0
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6) => [8] => [1,1,1,1,1,1,1,1] => 0
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [8] => [1,1,1,1,1,1,1,1] => 0
([(5,6)],7) => [1] => [1] => 0
([(4,6),(5,6)],7) => [1,1] => [2] => 0
([(3,6),(4,6),(5,6)],7) => [1,1,1] => [2,1] => 0
([(2,6),(3,6),(4,6),(5,6)],7) => [1,1,1,1] => [2,2] => 0
([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => [1,1,1,1,1] => [2,2,1] => 1
([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => [1,1,1,1,1,1] => [2,2,2] => 1
([(3,6),(4,5)],7) => [1,1] => [2] => 0
([(3,6),(4,5),(5,6)],7) => [1,1,1] => [2,1] => 0
([(2,3),(4,6),(5,6)],7) => [1,1,1] => [2,1] => 0
([(4,5),(4,6),(5,6)],7) => [3] => [3] => 0
([(2,6),(3,6),(4,5),(5,6)],7) => [1,1,1,1] => [2,2] => 0
([(1,2),(3,6),(4,6),(5,6)],7) => [1,1,1,1] => [2,2] => 0
([(3,6),(4,5),(4,6),(5,6)],7) => [3,1] => [3,1] => 0
([(1,6),(2,6),(3,6),(4,5),(5,6)],7) => [1,1,1,1,1] => [2,2,1] => 1
([(0,1),(2,6),(3,6),(4,6),(5,6)],7) => [1,1,1,1,1] => [2,2,1] => 1
([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1] => [3,2] => 1
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => [1,1,1,1,1,1] => [2,2,2] => 1
([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1] => [3,2,1] => 2
([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [3,2,2] => 2
([(3,5),(3,6),(4,5),(4,6)],7) => [4] => [1,1,1,1] => 0
([(1,6),(2,6),(3,5),(4,5)],7) => [1,1,1,1] => [2,2] => 0
([(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [4,1] => [1,1,1,1,1] => 0
([(1,6),(2,6),(3,4),(4,5),(5,6)],7) => [1,1,1,1,1] => [2,2,1] => 1
([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => [1,1,1,1,1] => [2,2,1] => 1
([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5] => [5] => 0
([(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [3,1,1] => [3,2] => 1
([(1,6),(2,6),(3,5),(4,5),(5,6)],7) => [1,1,1,1,1] => [2,2,1] => 1
([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [4,1,1] => [2,1,1,1,1] => 0
([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => [1,1,1,1,1,1] => [2,2,2] => 1
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1] => [5,1] => 0
([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [3,1,1,1] => [3,2,1] => 2
([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => [1,1,1,1,1,1] => [2,2,2] => 1
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [4,1,1,1] => [2,1,1,1,1,1] => 0
([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [5,2] => 1
([(0,6),(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [3,2,2] => 2
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1,1] => [5,2,1] => 7
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [6] => [3,3] => 1
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => [4,1,1] => [2,1,1,1,1] => 0
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => [1,1,1,1,1,1] => [2,2,2] => 1
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [6,1] => [3,3,1] => 3
([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => [4,1,1,1] => [2,1,1,1,1,1] => 0
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7] => [7] => 0
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [5,2] => 1
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [3,2,2] => 2
([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [6,1,1] => [3,3,2] => 5
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7,1] => [7,1] => 0
([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1,1] => [5,2,1] => 7
([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [8] => [1,1,1,1,1,1,1,1] => 0
([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [6,1,1] => [3,3,2] => 5
([(1,6),(2,5),(3,4)],7) => [1,1,1] => [2,1] => 0
([(2,6),(3,5),(4,5),(4,6)],7) => [1,1,1,1] => [2,2] => 0
([(1,2),(3,6),(4,5),(5,6)],7) => [1,1,1,1] => [2,2] => 0
([(0,3),(1,2),(4,6),(5,6)],7) => [1,1,1,1] => [2,2] => 0
([(2,3),(4,5),(4,6),(5,6)],7) => [3,1] => [3,1] => 0
([(1,6),(2,5),(3,4),(4,6),(5,6)],7) => [1,1,1,1,1] => [2,2,1] => 1
([(0,1),(2,6),(3,6),(4,5),(5,6)],7) => [1,1,1,1,1] => [2,2,1] => 1
([(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [3,1,1] => [3,2] => 1
([(1,2),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1] => [3,2] => 1
([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => [1,1,1,1,1,1] => [2,2,2] => 1
([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [3,1,1,1] => [3,2,1] => 2
([(0,1),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1] => [3,2,1] => 2
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [3,3] => [6] => 0
([(0,6),(1,6),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [3,2,2] => 2
([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [3,3,1] => [6,1] => 0
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [3,3,1,1] => [6,2] => 1
([(2,5),(2,6),(3,4),(3,6),(4,5)],7) => [5] => [5] => 0
([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => [4,1,1] => [2,1,1,1,1] => 0
([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7) => [1,1,1,1,1,1] => [2,2,2] => 1
([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [6] => [3,3] => 1
([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7) => [5,1] => [5,1] => 0
([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [5,1] => [5,1] => 0
([(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => [3,1,1,1] => [3,2,1] => 2
([(0,6),(1,6),(2,5),(3,4),(3,6),(4,5),(5,6)],7) => [4,1,1,1] => [2,1,1,1,1,1] => 0
([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [6,1] => [3,3,1] => 3
([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [3,2,2] => 2
([(0,6),(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7) => [5,1,1] => [5,2] => 1
([(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [5,2] => 1
([(0,6),(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [3,2,2] => 2
([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [7] => [7] => 0
([(0,6),(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [6,1,1] => [3,3,2] => 5
([(0,6),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1,1] => [5,2,1] => 7
([(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [7,1] => [7,1] => 0
([(1,6),(2,5),(3,4),(3,5),(4,6)],7) => [1,1,1,1,1] => [2,2,1] => 1
([(1,2),(3,5),(3,6),(4,5),(4,6)],7) => [4,1] => [1,1,1,1,1] => 0
([(0,6),(1,5),(2,4),(3,4),(5,6)],7) => [1,1,1,1,1] => [2,2,1] => 1
([(1,6),(2,6),(3,4),(3,5),(4,5)],7) => [3,1,1] => [3,2] => 1
([(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7) => [4,1,1] => [2,1,1,1,1] => 0
([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7) => [1,1,1,1,1,1] => [2,2,2] => 1
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [4,1,1] => [2,1,1,1,1] => 0
([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6)],7) => [3,1,1,1] => [3,2,1] => 2
([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7) => [3,1,1,1] => [3,2,1] => 2
([(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1] => [3,2,1] => 2
([(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1] => [5,1] => 0
([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => [1,1,1,1,1,1] => [2,2,2] => 1
([(0,1),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [3,1,1,1] => [3,2,1] => 2
([(1,5),(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [3,1,1,1] => [3,2,1] => 2
([(0,5),(1,6),(2,3),(2,4),(3,6),(4,6),(5,6)],7) => [4,1,1,1] => [2,1,1,1,1,1] => 0
([(1,4),(1,5),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => [4,3] => [3,1,1,1,1] => 0
([(0,5),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6)],7) => [3,1,1,1,1] => [3,2,2] => 2
([(1,4),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [5,1,1] => [5,2] => 1
([(0,6),(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [3,2,2] => 2
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [5,2] => 1
([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,1] => [6,1] => 0
([(0,6),(1,5),(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [3,1,1,1,1] => [3,2,2] => 2
([(0,6),(1,4),(1,5),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => [4,3,1] => [3,1,1,1,1,1] => 0
([(0,4),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [5,1,1,1] => [5,2,1] => 7
([(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,3] => [5,3] => 3
([(0,6),(1,5),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,1,1] => [6,2] => 1
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5)],7) => [3,1,1,1] => [3,2,1] => 2
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6] => [3,3] => 1
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7) => [3,1,1,1,1] => [3,2,2] => 2
([(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1] => [5,2] => 1
([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1] => [3,3,1] => 3
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1,1] => [5,2,1] => 7
([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1,1] => [3,3,2] => 5
([(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => [7] => [7] => 0
([(0,6),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6)],7) => [5,1,1] => [5,2] => 1
([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [6,1,1] => [3,3,2] => 5
([(1,4),(1,6),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => [8] => [1,1,1,1,1,1,1,1] => 0
([(0,6),(1,4),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => [6,1,1] => [3,3,2] => 5
([(0,6),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => [7,1] => [7,1] => 0
([(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7,1] => [7,1] => 0
([(0,6),(1,5),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1,1] => [5,2,1] => 7
([(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [7,1] => [7,1] => 0
([(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => [1,1,1,1,1,1,1,1] => 0
([(0,6),(1,5),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1,1] => [5,2,1] => 7
([(0,6),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1,1] => [3,3,2] => 5
([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7) => [4,1,1,1] => [2,1,1,1,1,1] => 0
([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [6,1] => [3,3,1] => 3
([(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6)],7) => [3,1,1,1,1] => [3,2,2] => 2
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6)],7) => [6,1,1] => [3,3,2] => 5
([(0,5),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [4,3,1] => [3,1,1,1,1,1] => 0
([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => [5,1,1,1] => [5,2,1] => 7
([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7,1] => [7,1] => 0
([(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6),(5,6)],7) => [3,3,1,1] => [6,2] => 1
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6)],7) => [6,1,1] => [3,3,2] => 5
([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [7,1] => [7,1] => 0
([(0,6),(1,6),(2,3),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1,1] => [5,2,1] => 7
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => [1,1,1,1,1,1,1,1] => 0
([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1,1] => [3,3,2] => 5
([(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => [6,1] => [3,3,1] => 3
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [7] => [7] => 0
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => [6,1,1] => [3,3,2] => 5
([(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [7,1] => [7,1] => 0
([(0,6),(1,6),(2,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => [6,1,1] => [3,3,2] => 5
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [8] => [1,1,1,1,1,1,1,1] => 0
([(1,5),(1,6),(2,3),(2,4),(3,6),(4,5)],7) => [6] => [3,3] => 1
([(1,4),(1,6),(2,3),(2,6),(3,5),(4,5),(5,6)],7) => [7] => [7] => 0
([(0,6),(1,2),(1,3),(2,5),(3,4),(4,6),(5,6)],7) => [6,1] => [3,3,1] => 3
([(1,6),(2,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => [6,1] => [3,3,1] => 3
([(1,2),(1,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [7] => [7] => 0
([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6),(5,6)],7) => [5,1,1] => [5,2] => 1
([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [5,1,1] => [5,2] => 1
([(1,6),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => [6,1] => [3,3,1] => 3
([(0,4),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => [4,1,1,1] => [2,1,1,1,1,1] => 0
([(0,6),(1,4),(1,6),(2,3),(2,6),(3,5),(4,5),(5,6)],7) => [7,1] => [7,1] => 0
([(1,2),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => [1,1,1,1,1,1,1,1] => 0
([(0,6),(1,2),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1,1] => [5,2,1] => 7
([(0,6),(1,4),(2,3),(2,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1,1] => [3,3,2] => 5
([(0,6),(1,2),(1,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [7,1] => [7,1] => 0
([(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [7,1] => [7,1] => 0
([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [8] => [1,1,1,1,1,1,1,1] => 0
([(0,6),(1,4),(2,3),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1,1] => [5,2,1] => 7
([(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [6,1,1] => [3,3,2] => 5
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7) => [4,1,1] => [2,1,1,1,1] => 0
([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7) => [4,1,1,1] => [2,1,1,1,1,1] => 0
([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(5,6)],7) => [5,1,1] => [5,2] => 1
([(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(5,6)],7) => [3,1,1,1,1] => [3,2,2] => 2
([(0,6),(1,6),(2,3),(2,4),(3,5),(4,5),(5,6)],7) => [4,1,1,1] => [2,1,1,1,1,1] => 0
([(0,4),(1,4),(2,5),(3,5),(3,6),(4,6),(5,6)],7) => [3,1,1,1,1] => [3,2,2] => 2
([(0,4),(0,5),(1,2),(1,3),(2,6),(3,6),(4,6),(5,6)],7) => [4,4] => [8] => 0
([(0,4),(1,4),(1,6),(2,5),(2,6),(3,5),(3,6),(5,6)],7) => [5,1,1,1] => [5,2,1] => 7
([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [4,3,1] => [3,1,1,1,1,1] => 0
([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [5,1,1,1] => [5,2,1] => 7
([(0,5),(1,4),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [3,3,1,1] => [6,2] => 1
([(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7) => [8] => [1,1,1,1,1,1,1,1] => 0
([(0,6),(1,5),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7) => [6,1,1] => [3,3,2] => 5
([(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => [7,1] => [7,1] => 0
([(0,1),(0,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => [8] => [1,1,1,1,1,1,1,1] => 0
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5)],7) => [7,1] => [7,1] => 0
([(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(5,6)],7) => [7,1] => [7,1] => 0
([(0,1),(2,5),(3,4),(4,6),(5,6)],7) => [1,1,1,1,1] => [2,2,1] => 1
([(0,3),(1,2),(4,5),(4,6),(5,6)],7) => [3,1,1] => [3,2] => 1
([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => [1,1,1,1,1,1] => [2,2,2] => 1
([(0,1),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1] => [3,2,1] => 2
([(0,5),(1,4),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => [3,1,1,1,1] => [3,2,2] => 2
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [3,3,1] => [6,1] => 0
([(0,5),(1,4),(1,6),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => [3,3,1,1] => [6,2] => 1
([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => [1,1,1,1,1,1] => [2,2,2] => 1
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5)],7) => [5,1] => [5,1] => 0
([(0,6),(1,5),(2,3),(2,4),(3,4),(5,6)],7) => [3,1,1,1] => [3,2,1] => 2
([(0,6),(1,4),(2,3),(2,6),(3,5),(4,5),(5,6)],7) => [4,1,1,1] => [2,1,1,1,1,1] => 0
([(0,4),(1,3),(2,5),(2,6),(3,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [3,2,2] => 2
([(0,1),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [6,1] => [3,3,1] => 3
([(0,5),(1,2),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => [5,1,1] => [5,2] => 1
([(0,6),(1,4),(2,3),(2,5),(3,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [3,2,2] => 2
([(0,5),(1,4),(1,5),(2,3),(2,6),(3,6),(4,6)],7) => [3,1,1,1,1] => [3,2,2] => 2
([(0,5),(1,4),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [3,2,2] => 2
([(0,4),(1,2),(1,6),(2,5),(3,5),(3,6),(4,6),(5,6)],7) => [6,1,1] => [3,3,2] => 5
([(0,5),(1,2),(1,6),(2,6),(3,4),(3,6),(4,5),(5,6)],7) => [4,3,1] => [3,1,1,1,1,1] => 0
([(0,4),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => [3,3,1,1] => [6,2] => 1
([(0,1),(0,5),(1,4),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => [5,3] => [5,3] => 3
([(0,4),(1,3),(2,5),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1,1] => [5,2,1] => 7
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [7,1] => [7,1] => 0
([(0,5),(1,4),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,1,1] => [6,2] => 1
([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7) => [3,3] => [6] => 0
([(1,3),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => [5,1,1] => [5,2] => 1
([(0,1),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [5,2] => 1
([(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7) => [3,3,1] => [6,1] => 0
([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7) => [3,3,1] => [6,1] => 0
([(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1] => [3,3,1] => 3
([(0,6),(1,2),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1,1] => [5,2,1] => 7
([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7) => [3,3,1,1] => [6,2] => 1
([(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [5,3] => [5,3] => 3
([(1,2),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1,1] => [3,3,2] => 5
([(0,1),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1,1] => [3,3,2] => 5
([(0,3),(0,6),(1,2),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => [8] => [1,1,1,1,1,1,1,1] => 0
([(0,6),(1,5),(2,3),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => [6,1,1] => [3,3,2] => 5
([(1,5),(1,6),(2,3),(2,4),(3,4),(3,6),(4,5),(5,6)],7) => [8] => [1,1,1,1,1,1,1,1] => 0
([(0,1),(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6)],7) => [3,3,1,1] => [6,2] => 1
([(0,5),(0,6),(1,2),(1,4),(2,3),(3,5),(4,6)],7) => [7] => [7] => 0
([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7) => [7,1] => [7,1] => 0
([(0,3),(1,4),(1,5),(2,4),(2,6),(3,5),(4,6),(5,6)],7) => [6,1,1] => [3,3,2] => 5
([(0,1),(0,3),(1,2),(2,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => [1,1,1,1,1,1,1,1] => 0
([(0,3),(0,4),(1,2),(1,6),(2,5),(3,5),(4,6),(5,6)],7) => [8] => [1,1,1,1,1,1,1,1] => 0
([(0,6),(1,2),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [5,1,1,1] => [5,2,1] => 7
([(0,6),(1,2),(1,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => [7,1] => [7,1] => 0
([(0,3),(1,2),(1,5),(2,4),(3,6),(4,5),(4,6),(5,6)],7) => [6,1,1] => [3,3,2] => 5
([(0,6),(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5)],7) => [6,1,1] => [3,3,2] => 5
([(0,6),(1,2),(1,6),(2,4),(3,4),(3,5),(4,5),(5,6)],7) => [7,1] => [7,1] => 0
([(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => [7,1] => [7,1] => 0
([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5)],7) => [8] => [1,1,1,1,1,1,1,1] => 0
([(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [8] => [1,1,1,1,1,1,1,1] => 0
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,6),(4,6),(5,6)],7) => [6,1,1] => [3,3,2] => 5
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,6),(4,6),(5,6)],7) => [4,3,1] => [3,1,1,1,1,1] => 0
([(0,1),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [7,1] => [7,1] => 0
([(0,5),(0,6),(1,2),(1,3),(2,3),(4,5),(4,6)],7) => [4,3] => [3,1,1,1,1] => 0
([(0,3),(1,3),(1,4),(2,5),(2,6),(4,5),(4,6),(5,6)],7) => [5,1,1,1] => [5,2,1] => 7
([(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1,1] => [3,3,2] => 5
([(0,6),(1,2),(1,4),(2,4),(3,5),(3,6),(4,5),(5,6)],7) => [3,3,1,1] => [6,2] => 1
([(0,1),(0,2),(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,3] => [5,3] => 3
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5)],7) => [5,1,1,1] => [5,2,1] => 7
search for individual values
searching the database for the individual values of this statistic
Description
Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight.
Given $\lambda$ count how many integer partitions $w$ (weight) there are, such that
$P_{\lambda,w}$ is non-integral, i.e., $w$ such that the Gelfand-Tsetlin polytope $P_{\lambda,w}$ has at least one non-integral vertex.
Map
Glaisher-Franklin inverse
Description
The Glaisher-Franklin bijection on integer partitions.
This map sends the number of distinct repeated part sizes to the number of distinct even part sizes, see [1, 3.3.1].
Map
to edge-partition of biconnected components
Description
Sends a graph to the partition recording the number of edges in its biconnected components.
The biconnected components are also known as blocks of a graph.