Identifier
-
Mp00037:
Graphs
—to partition of connected components⟶
Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000206: Integer partitions ⟶ ℤ
Values
([],3) => [1,1,1] => [1,1] => [1] => 0
([],4) => [1,1,1,1] => [1,1,1] => [1,1] => 0
([(2,3)],4) => [2,1,1] => [1,1] => [1] => 0
([],5) => [1,1,1,1,1] => [1,1,1,1] => [1,1,1] => 0
([(3,4)],5) => [2,1,1,1] => [1,1,1] => [1,1] => 0
([(2,4),(3,4)],5) => [3,1,1] => [1,1] => [1] => 0
([(1,4),(2,3)],5) => [2,2,1] => [2,1] => [1] => 0
([(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,1] => [1] => 0
([],6) => [1,1,1,1,1,1] => [1,1,1,1,1] => [1,1,1,1] => 0
([(4,5)],6) => [2,1,1,1,1] => [1,1,1,1] => [1,1,1] => 0
([(3,5),(4,5)],6) => [3,1,1,1] => [1,1,1] => [1,1] => 0
([(2,5),(3,5),(4,5)],6) => [4,1,1] => [1,1] => [1] => 0
([(2,5),(3,4)],6) => [2,2,1,1] => [2,1,1] => [1,1] => 0
([(2,5),(3,4),(4,5)],6) => [4,1,1] => [1,1] => [1] => 0
([(1,2),(3,5),(4,5)],6) => [3,2,1] => [2,1] => [1] => 0
([(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,1,1] => [1,1] => 0
([(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1] => [1] => 0
([(2,4),(2,5),(3,4),(3,5)],6) => [4,1,1] => [1,1] => [1] => 0
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1] => [1] => 0
([(0,5),(1,4),(2,3)],6) => [2,2,2] => [2,2] => [2] => 0
([(1,2),(3,4),(3,5),(4,5)],6) => [3,2,1] => [2,1] => [1] => 0
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1] => [1] => 0
([],7) => [1,1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,1,1,1,1] => 0
([(5,6)],7) => [2,1,1,1,1,1] => [1,1,1,1,1] => [1,1,1,1] => 0
([(4,6),(5,6)],7) => [3,1,1,1,1] => [1,1,1,1] => [1,1,1] => 0
([(3,6),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => [1,1] => 0
([(2,6),(3,6),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 0
([(3,6),(4,5)],7) => [2,2,1,1,1] => [2,1,1,1] => [1,1,1] => 0
([(3,6),(4,5),(5,6)],7) => [4,1,1,1] => [1,1,1] => [1,1] => 0
([(2,3),(4,6),(5,6)],7) => [3,2,1,1] => [2,1,1] => [1,1] => 0
([(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [1,1,1,1] => [1,1,1] => 0
([(2,6),(3,6),(4,5),(5,6)],7) => [5,1,1] => [1,1] => [1] => 0
([(1,2),(3,6),(4,6),(5,6)],7) => [4,2,1] => [2,1] => [1] => 0
([(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => [1,1] => 0
([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 0
([(3,5),(3,6),(4,5),(4,6)],7) => [4,1,1,1] => [1,1,1] => [1,1] => 0
([(1,6),(2,6),(3,5),(4,5)],7) => [3,3,1] => [3,1] => [1] => 0
([(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 0
([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => [1,1] => 0
([(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 0
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 0
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [5,1,1] => [1,1] => [1] => 0
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 0
([(1,6),(2,5),(3,4)],7) => [2,2,2,1] => [2,2,1] => [2,1] => 0
([(2,6),(3,5),(4,5),(4,6)],7) => [5,1,1] => [1,1] => [1] => 0
([(1,2),(3,6),(4,5),(5,6)],7) => [4,2,1] => [2,1] => [1] => 0
([(0,3),(1,2),(4,6),(5,6)],7) => [3,2,2] => [2,2] => [2] => 0
([(2,3),(4,5),(4,6),(5,6)],7) => [3,2,1,1] => [2,1,1] => [1,1] => 0
([(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 0
([(1,2),(3,6),(4,5),(4,6),(5,6)],7) => [4,2,1] => [2,1] => [1] => 0
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 0
([(2,5),(2,6),(3,4),(3,6),(4,5)],7) => [5,1,1] => [1,1] => [1] => 0
([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 0
([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 0
([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 0
([(1,2),(3,5),(3,6),(4,5),(4,6)],7) => [4,2,1] => [2,1] => [1] => 0
([(1,6),(2,6),(3,4),(3,5),(4,5)],7) => [3,3,1] => [3,1] => [1] => 0
([(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,2,1] => [2,1] => [1] => 0
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => [1,1] => 0
([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 0
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 0
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [5,1,1] => [1,1] => [1] => 0
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 0
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 0
([(0,3),(1,2),(4,5),(4,6),(5,6)],7) => [3,2,2] => [2,2] => [2] => 0
([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7) => [3,3,1] => [3,1] => [1] => 0
([(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,2,1] => [2,1] => [1] => 0
([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 0
([(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [4,1,1,1,1] => [1,1,1,1] => [1,1,1] => 0
([(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => [1] => 0
([(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => [1] => 0
([(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => [1] => 0
([(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => [1] => 0
([(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => [1] => 0
([(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => [1] => 0
([(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => [1] => 0
([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => [1] => 0
([(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => [1] => 0
([(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => [1] => 0
([(3,7),(4,7),(5,7),(6,7)],8) => [5,1,1,1] => [1,1,1] => [1,1] => 0
([],8) => [1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1] => [1,1,1,1,1,1] => 0
([(4,7),(5,6)],8) => [2,2,1,1,1,1] => [2,1,1,1,1] => [1,1,1,1] => 0
([(4,7),(5,6),(6,7)],8) => [4,1,1,1,1] => [1,1,1,1] => [1,1,1] => 0
([(4,6),(4,7),(5,6),(5,7)],8) => [4,1,1,1,1] => [1,1,1,1] => [1,1,1] => 0
([(2,7),(3,7),(4,6),(5,6)],8) => [3,3,1,1] => [3,1,1] => [1,1] => 0
([(2,7),(3,6),(4,6),(4,7),(5,6),(5,7)],8) => [6,1,1] => [1,1] => [1] => 0
([(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8) => [6,1,1] => [1,1] => [1] => 0
([(3,6),(3,7),(4,5),(4,7),(5,6),(6,7)],8) => [5,1,1,1] => [1,1,1] => [1,1] => 0
([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8) => [6,1,1] => [1,1] => [1] => 0
([(2,6),(2,7),(3,4),(3,5),(4,5),(6,7)],8) => [3,3,1,1] => [3,1,1] => [1,1] => 0
([(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [4,2,1,1] => [2,1,1] => [1,1] => 0
([(2,6),(2,7),(3,4),(3,5),(4,5),(4,7),(5,6),(6,7)],8) => [6,1,1] => [1,1] => [1] => 0
([(2,3),(2,7),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => [1] => 0
([(2,5),(2,6),(2,7),(3,4),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8) => [6,1,1] => [1,1] => [1] => 0
([(1,3),(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [4,3,1] => [3,1] => [1] => 0
([(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8) => [6,1,1] => [1,1] => [1] => 0
([(1,2),(1,3),(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [4,3,1] => [3,1] => [1] => 0
([(0,7),(1,6),(2,5),(3,4)],8) => [2,2,2,2] => [2,2,2] => [2,2] => 0
([(0,3),(1,2),(4,6),(4,7),(5,6),(5,7)],8) => [4,2,2] => [2,2] => [2] => 0
([(0,3),(1,2),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [4,2,2] => [2,2] => [2] => 0
([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9) => [7,1,1] => [1,1] => [1] => 0
>>> Load all 132 entries. <<<
search for individual values
searching the database for the individual values of this statistic
Description
Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight.
Given $\lambda$ count how many integer compositions $w$ (weight) there are, such that
$P_{\lambda,w}$ is non-integral, i.e., $w$ such that the Gelfand-Tsetlin polytope $P_{\lambda,w}$ has at least one non-integral vertex.
See also St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight..
Each value in this statistic is greater than or equal to corresponding value in St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight..
Given $\lambda$ count how many integer compositions $w$ (weight) there are, such that
$P_{\lambda,w}$ is non-integral, i.e., $w$ such that the Gelfand-Tsetlin polytope $P_{\lambda,w}$ has at least one non-integral vertex.
See also St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight..
Each value in this statistic is greater than or equal to corresponding value in St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight..
Map
to partition of connected components
Description
Return the partition of the sizes of the connected components of the graph.
Map
first row removal
Description
Removes the first entry of an integer partition
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!