edit this statistic or download as text // json
Identifier
Values
=>
Cc0002;cc-rep
[1]=>1 [2]=>2 [1,1]=>1 [3]=>4 [2,1]=>3 [1,1,1]=>1 [4]=>8 [3,1]=>7 [2,2]=>5 [2,1,1]=>4 [1,1,1,1]=>1 [5]=>16 [4,1]=>15 [3,2]=>12 [3,1,1]=>11 [2,2,1]=>7 [2,1,1,1]=>5 [1,1,1,1,1]=>1 [6]=>32 [5,1]=>31 [4,2]=>26 [4,1,1]=>26 [3,3]=>23 [3,2,1]=>17 [3,1,1,1]=>16 [2,2,2]=>12 [2,2,1,1]=>11 [2,1,1,1,1]=>6 [1,1,1,1,1,1]=>1 [7]=>64 [6,1]=>63 [5,2]=>54 [5,1,1]=>57 [4,3]=>45 [4,2,1]=>38 [4,1,1,1]=>42 [3,3,1]=>27 [3,2,2]=>33 [3,2,1,1]=>30 [3,1,1,1,1]=>22 [2,2,2,1]=>14 [2,2,1,1,1]=>16 [2,1,1,1,1,1]=>7 [1,1,1,1,1,1,1]=>1 [8]=>128 [7,1]=>127 [6,2]=>110 [6,1,1]=>120 [5,3]=>89 [5,2,1]=>74 [5,1,1,1]=>99 [4,4]=>94 [4,3,1]=>54 [4,2,2]=>73 [4,2,1,1]=>64 [4,1,1,1,1]=>64 [3,3,2]=>42 [3,3,1,1]=>54 [3,2,2,1]=>42 [3,2,1,1,1]=>48 [3,1,1,1,1,1]=>29 [2,2,2,2]=>26 [2,2,2,1,1]=>25 [2,2,1,1,1,1]=>22 [2,1,1,1,1,1,1]=>8 [1,1,1,1,1,1,1,1]=>1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight.
Given $\lambda$ count how many integer compositions $w$ (weight) there are, such that
$P_{\lambda,w}$ is integral, i.e., $w$ such that the Gelfand-Tsetlin polytope $P_{\lambda,w}$ has all vertices in integer lattice points.
References
[1] De Loera, Jesús A., McAllister, T. B. Vertices of Gelfand-Tsetlin polytopes MathSciNet:2096742
Created
May 19, 2014 at 11:32 by Per Alexandersson
Updated
May 29, 2015 at 17:10 by Martin Rubey