Identifier
- St000212: Integer partitions ⟶ ℤ
Values
=>
Cc0002;cc-rep
[]=>1
[1]=>1
[2]=>0
[1,1]=>1
[3]=>0
[2,1]=>1
[1,1,1]=>1
[4]=>0
[3,1]=>0
[2,2]=>1
[2,1,1]=>2
[1,1,1,1]=>1
[5]=>0
[4,1]=>0
[3,2]=>1
[3,1,1]=>1
[2,2,1]=>3
[2,1,1,1]=>3
[1,1,1,1,1]=>1
[6]=>0
[5,1]=>0
[4,2]=>0
[4,1,1]=>0
[3,3]=>1
[3,2,1]=>5
[3,1,1,1]=>3
[2,2,2]=>2
[2,2,1,1]=>6
[2,1,1,1,1]=>4
[1,1,1,1,1,1]=>1
[7]=>0
[6,1]=>0
[5,2]=>0
[5,1,1]=>0
[4,3]=>1
[4,2,1]=>2
[4,1,1,1]=>1
[3,3,1]=>5
[3,2,2]=>6
[3,2,1,1]=>14
[3,1,1,1,1]=>6
[2,2,2,1]=>8
[2,2,1,1,1]=>10
[2,1,1,1,1,1]=>5
[1,1,1,1,1,1,1]=>1
[8]=>0
[7,1]=>0
[6,2]=>0
[6,1,1]=>0
[5,3]=>0
[5,2,1]=>0
[5,1,1,1]=>0
[4,4]=>1
[4,3,1]=>8
[4,2,2]=>6
[4,2,1,1]=>11
[4,1,1,1,1]=>4
[3,3,2]=>10
[3,3,1,1]=>16
[3,2,2,1]=>28
[3,2,1,1,1]=>30
[3,1,1,1,1,1]=>10
[2,2,2,2]=>6
[2,2,2,1,1]=>18
[2,2,1,1,1,1]=>15
[2,1,1,1,1,1,1]=>6
[1,1,1,1,1,1,1,1]=>1
[9]=>0
[8,1]=>0
[7,2]=>0
[7,1,1]=>0
[6,3]=>0
[6,2,1]=>0
[6,1,1,1]=>0
[5,4]=>1
[5,3,1]=>3
[5,2,2]=>2
[5,2,1,1]=>3
[5,1,1,1,1]=>1
[4,4,1]=>7
[4,3,2]=>23
[4,3,1,1]=>34
[4,2,2,1]=>37
[4,2,1,1,1]=>35
[4,1,1,1,1,1]=>10
[3,3,3]=>6
[3,3,2,1]=>54
[3,3,1,1,1]=>40
[3,2,2,2]=>28
[3,2,2,1,1]=>76
[3,2,1,1,1,1]=>55
[3,1,1,1,1,1,1]=>15
[2,2,2,2,1]=>24
[2,2,2,1,1,1]=>33
[2,2,1,1,1,1,1]=>21
[2,1,1,1,1,1,1,1]=>7
[1,1,1,1,1,1,1,1,1]=>1
[10]=>0
[9,1]=>0
[8,2]=>0
[8,1,1]=>0
[7,3]=>0
[7,2,1]=>0
[7,1,1,1]=>0
[6,4]=>0
[6,3,1]=>0
[6,2,2]=>0
[6,2,1,1]=>0
[6,1,1,1,1]=>0
[5,5]=>1
[5,4,1]=>11
[5,3,2]=>18
[5,3,1,1]=>24
[5,2,2,1]=>22
[5,2,1,1,1]=>19
[5,1,1,1,1,1]=>5
[4,4,2]=>23
[4,4,1,1]=>31
[4,3,3]=>22
[4,3,2,1]=>148
[4,3,1,1,1]=>105
[4,2,2,2]=>53
[4,2,2,1,1]=>130
[4,2,1,1,1,1]=>85
[4,1,1,1,1,1,1]=>20
[3,3,3,1]=>44
[3,3,2,2]=>72
[3,3,2,1,1]=>170
[3,3,1,1,1,1]=>85
[3,2,2,2,1]=>128
[3,2,2,1,1,1]=>164
[3,2,1,1,1,1,1]=>91
[3,1,1,1,1,1,1,1]=>21
[2,2,2,2,2]=>18
[2,2,2,2,1,1]=>57
[2,2,2,1,1,1,1]=>54
[2,2,1,1,1,1,1,1]=>28
[2,1,1,1,1,1,1,1,1]=>8
[1,1,1,1,1,1,1,1,1,1]=>1
[11]=>0
[10,1]=>0
[9,2]=>0
[9,1,1]=>0
[8,3]=>0
[8,2,1]=>0
[8,1,1,1]=>0
[7,4]=>0
[7,3,1]=>0
[7,2,2]=>0
[7,2,1,1]=>0
[7,1,1,1,1]=>0
[6,5]=>1
[6,4,1]=>4
[6,3,2]=>5
[6,3,1,1]=>6
[6,2,2,1]=>5
[6,2,1,1,1]=>4
[6,1,1,1,1,1]=>1
[5,5,1]=>9
[5,4,2]=>49
[5,4,1,1]=>63
[5,3,3]=>31
[5,3,2,1]=>158
[5,3,1,1,1]=>107
[5,2,2,2]=>51
[5,2,2,1,1]=>113
[5,2,1,1,1,1]=>69
[5,1,1,1,1,1,1]=>15
[4,4,3]=>39
[4,4,2,1]=>165
[4,4,1,1,1]=>105
[4,3,3,1]=>180
[4,3,2,2]=>250
[4,3,2,1,1]=>553
[4,3,1,1,1,1]=>265
[4,2,2,2,1]=>287
[4,2,2,1,1,1]=>346
[4,2,1,1,1,1,1]=>175
[4,1,1,1,1,1,1,1]=>35
[3,3,3,2]=>110
[3,3,3,1,1]=>174
[3,3,2,2,1]=>370
[3,3,2,1,1,1]=>419
[3,3,1,1,1,1,1]=>161
[3,2,2,2,2]=>118
[3,2,2,2,1,1]=>349
[3,2,2,1,1,1,1]=>309
[3,2,1,1,1,1,1,1]=>140
[3,1,1,1,1,1,1,1,1]=>28
[2,2,2,2,2,1]=>75
[2,2,2,2,1,1,1]=>111
[2,2,2,1,1,1,1,1]=>82
[2,2,1,1,1,1,1,1,1]=>36
[2,1,1,1,1,1,1,1,1,1]=>9
[1,1,1,1,1,1,1,1,1,1,1]=>1
[12]=>0
[11,1]=>0
[10,2]=>0
[10,1,1]=>0
[9,3]=>0
[9,2,1]=>0
[9,1,1,1]=>0
[8,4]=>0
[8,3,1]=>0
[8,2,2]=>0
[8,2,1,1]=>0
[8,1,1,1,1]=>0
[7,5]=>0
[7,4,1]=>0
[7,3,2]=>0
[7,3,1,1]=>0
[7,2,2,1]=>0
[7,2,1,1,1]=>0
[7,1,1,1,1,1]=>0
[6,6]=>1
[6,5,1]=>14
[6,4,2]=>35
[6,4,1,1]=>42
[6,3,3]=>20
[6,3,2,1]=>80
[6,3,1,1,1]=>52
[6,2,2,2]=>25
[6,2,2,1,1]=>50
[6,2,1,1,1,1]=>29
[6,1,1,1,1,1,1]=>6
[5,5,2]=>41
[5,5,1,1]=>51
[5,4,3]=>109
[5,4,2,1]=>413
[5,4,1,1,1]=>257
[5,3,3,1]=>301
[5,3,2,2]=>369
[5,3,2,1,1]=>761
[5,3,1,1,1,1]=>351
[5,2,2,2,1]=>347
[5,2,2,1,1,1]=>397
[5,2,1,1,1,1,1]=>189
[5,1,1,1,1,1,1,1]=>35
[4,4,4]=>22
[4,4,3,1]=>353
[4,4,2,2]=>339
[4,4,2,1,1]=>693
[4,4,1,1,1,1]=>295
[4,3,3,2]=>518
[4,3,3,1,1]=>802
[4,3,2,2,1]=>1460
[4,3,2,1,1,1]=>1583
[4,3,1,1,1,1,1]=>581
[4,2,2,2,2]=>334
[4,2,2,2,1,1]=>925
[4,2,2,1,1,1,1]=>776
[4,2,1,1,1,1,1,1]=>322
[4,1,1,1,1,1,1,1,1]=>56
[3,3,3,3]=>72
[3,3,3,2,1]=>654
[3,3,3,1,1,1]=>508
[3,3,2,2,2]=>416
[3,3,2,2,1,1]=>1138
[3,3,2,1,1,1,1]=>889
[3,3,1,1,1,1,1,1]=>280
[3,2,2,2,2,1]=>542
[3,2,2,2,1,1,1]=>769
[3,2,2,1,1,1,1,1]=>531
[3,2,1,1,1,1,1,1,1]=>204
[3,1,1,1,1,1,1,1,1,1]=>36
[2,2,2,2,2,2]=>57
[2,2,2,2,2,1,1]=>186
[2,2,2,2,1,1,1,1]=>193
[2,2,2,1,1,1,1,1,1]=>118
[2,2,1,1,1,1,1,1,1,1]=>45
[2,1,1,1,1,1,1,1,1,1,1]=>10
[1,1,1,1,1,1,1,1,1,1,1,1]=>1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of standard Young tableaux for an integer partition such that no two consecutive entries appear in the same row.
Summing over all partitions of $n$ yields the sequence
$$1, 1, 1, 2, 4, 9, 22, 59, 170, 516, 1658, \dots$$
which is oeis:A237770.
The references in this sequence of the OEIS indicate a connection with Baxter permutations.
Summing over all partitions of $n$ yields the sequence
$$1, 1, 1, 2, 4, 9, 22, 59, 170, 516, 1658, \dots$$
which is oeis:A237770.
The references in this sequence of the OEIS indicate a connection with Baxter permutations.
References
[1] Dulucq, S., Guibert, O. Stack words, standard tableaux and Baxter permutations MathSciNet:1417289 DOI:10.1016/s0012-365x(96)83009-3
Code
def statistic(x): l = [any(any(f == e+1 for (e,f) in zip(row, row[1:])) for row in T) for T in StandardTableaux(x)] return l.count(False)
Created
Aug 21, 2014 at 14:22 by Per Alexandersson
Updated
Oct 29, 2017 at 16:35 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!