Identifier
-
Mp00050:
Ordered trees
—to binary tree: right brother = right child⟶
Binary trees
Mp00014: Binary trees —to 132-avoiding permutation⟶ Permutations
St000221: Permutations ⟶ ℤ
Values
[[]] => [.,.] => [1] => 1
[[],[]] => [.,[.,.]] => [2,1] => 0
[[[]]] => [[.,.],.] => [1,2] => 2
[[],[],[]] => [.,[.,[.,.]]] => [3,2,1] => 0
[[],[[]]] => [.,[[.,.],.]] => [2,3,1] => 0
[[[]],[]] => [[.,.],[.,.]] => [3,1,2] => 0
[[[],[]]] => [[.,[.,.]],.] => [2,1,3] => 1
[[[[]]]] => [[[.,.],.],.] => [1,2,3] => 3
[[],[],[],[]] => [.,[.,[.,[.,.]]]] => [4,3,2,1] => 0
[[],[],[[]]] => [.,[.,[[.,.],.]]] => [3,4,2,1] => 0
[[],[[]],[]] => [.,[[.,.],[.,.]]] => [4,2,3,1] => 0
[[],[[],[]]] => [.,[[.,[.,.]],.]] => [3,2,4,1] => 0
[[],[[[]]]] => [.,[[[.,.],.],.]] => [2,3,4,1] => 0
[[[]],[],[]] => [[.,.],[.,[.,.]]] => [4,3,1,2] => 0
[[[]],[[]]] => [[.,.],[[.,.],.]] => [3,4,1,2] => 0
[[[],[]],[]] => [[.,[.,.]],[.,.]] => [4,2,1,3] => 0
[[[[]]],[]] => [[[.,.],.],[.,.]] => [4,1,2,3] => 0
[[[],[],[]]] => [[.,[.,[.,.]]],.] => [3,2,1,4] => 1
[[[],[[]]]] => [[.,[[.,.],.]],.] => [2,3,1,4] => 1
[[[[]],[]]] => [[[.,.],[.,.]],.] => [3,1,2,4] => 1
[[[[],[]]]] => [[[.,[.,.]],.],.] => [2,1,3,4] => 2
[[[[[]]]]] => [[[[.,.],.],.],.] => [1,2,3,4] => 4
[[],[],[],[],[]] => [.,[.,[.,[.,[.,.]]]]] => [5,4,3,2,1] => 0
[[],[],[],[[]]] => [.,[.,[.,[[.,.],.]]]] => [4,5,3,2,1] => 0
[[],[],[[]],[]] => [.,[.,[[.,.],[.,.]]]] => [5,3,4,2,1] => 0
[[],[],[[],[]]] => [.,[.,[[.,[.,.]],.]]] => [4,3,5,2,1] => 0
[[],[],[[[]]]] => [.,[.,[[[.,.],.],.]]] => [3,4,5,2,1] => 0
[[],[[]],[],[]] => [.,[[.,.],[.,[.,.]]]] => [5,4,2,3,1] => 0
[[],[[]],[[]]] => [.,[[.,.],[[.,.],.]]] => [4,5,2,3,1] => 0
[[],[[],[]],[]] => [.,[[.,[.,.]],[.,.]]] => [5,3,2,4,1] => 0
[[],[[[]]],[]] => [.,[[[.,.],.],[.,.]]] => [5,2,3,4,1] => 0
[[],[[],[],[]]] => [.,[[.,[.,[.,.]]],.]] => [4,3,2,5,1] => 0
[[],[[],[[]]]] => [.,[[.,[[.,.],.]],.]] => [3,4,2,5,1] => 0
[[],[[[]],[]]] => [.,[[[.,.],[.,.]],.]] => [4,2,3,5,1] => 0
[[],[[[],[]]]] => [.,[[[.,[.,.]],.],.]] => [3,2,4,5,1] => 0
[[],[[[[]]]]] => [.,[[[[.,.],.],.],.]] => [2,3,4,5,1] => 0
[[[]],[],[],[]] => [[.,.],[.,[.,[.,.]]]] => [5,4,3,1,2] => 0
[[[]],[],[[]]] => [[.,.],[.,[[.,.],.]]] => [4,5,3,1,2] => 0
[[[]],[[]],[]] => [[.,.],[[.,.],[.,.]]] => [5,3,4,1,2] => 0
[[[]],[[],[]]] => [[.,.],[[.,[.,.]],.]] => [4,3,5,1,2] => 0
[[[]],[[[]]]] => [[.,.],[[[.,.],.],.]] => [3,4,5,1,2] => 0
[[[],[]],[],[]] => [[.,[.,.]],[.,[.,.]]] => [5,4,2,1,3] => 0
[[[[]]],[],[]] => [[[.,.],.],[.,[.,.]]] => [5,4,1,2,3] => 0
[[[],[]],[[]]] => [[.,[.,.]],[[.,.],.]] => [4,5,2,1,3] => 0
[[[[]]],[[]]] => [[[.,.],.],[[.,.],.]] => [4,5,1,2,3] => 0
[[[],[],[]],[]] => [[.,[.,[.,.]]],[.,.]] => [5,3,2,1,4] => 0
[[[],[[]]],[]] => [[.,[[.,.],.]],[.,.]] => [5,2,3,1,4] => 0
[[[[]],[]],[]] => [[[.,.],[.,.]],[.,.]] => [5,3,1,2,4] => 0
[[[[],[]]],[]] => [[[.,[.,.]],.],[.,.]] => [5,2,1,3,4] => 0
[[[[[]]]],[]] => [[[[.,.],.],.],[.,.]] => [5,1,2,3,4] => 0
[[[],[],[],[]]] => [[.,[.,[.,[.,.]]]],.] => [4,3,2,1,5] => 1
[[[],[],[[]]]] => [[.,[.,[[.,.],.]]],.] => [3,4,2,1,5] => 1
[[[],[[]],[]]] => [[.,[[.,.],[.,.]]],.] => [4,2,3,1,5] => 1
[[[],[[],[]]]] => [[.,[[.,[.,.]],.]],.] => [3,2,4,1,5] => 1
[[[],[[[]]]]] => [[.,[[[.,.],.],.]],.] => [2,3,4,1,5] => 1
[[[[]],[],[]]] => [[[.,.],[.,[.,.]]],.] => [4,3,1,2,5] => 1
[[[[]],[[]]]] => [[[.,.],[[.,.],.]],.] => [3,4,1,2,5] => 1
[[[[],[]],[]]] => [[[.,[.,.]],[.,.]],.] => [4,2,1,3,5] => 1
[[[[[]]],[]]] => [[[[.,.],.],[.,.]],.] => [4,1,2,3,5] => 1
[[[[],[],[]]]] => [[[.,[.,[.,.]]],.],.] => [3,2,1,4,5] => 2
[[[[],[[]]]]] => [[[.,[[.,.],.]],.],.] => [2,3,1,4,5] => 2
[[[[[]],[]]]] => [[[[.,.],[.,.]],.],.] => [3,1,2,4,5] => 2
[[[[[],[]]]]] => [[[[.,[.,.]],.],.],.] => [2,1,3,4,5] => 3
[[[[[[]]]]]] => [[[[[.,.],.],.],.],.] => [1,2,3,4,5] => 5
[[],[],[],[],[],[]] => [.,[.,[.,[.,[.,[.,.]]]]]] => [6,5,4,3,2,1] => 0
[[],[],[],[],[[]]] => [.,[.,[.,[.,[[.,.],.]]]]] => [5,6,4,3,2,1] => 0
[[],[],[],[[]],[]] => [.,[.,[.,[[.,.],[.,.]]]]] => [6,4,5,3,2,1] => 0
[[],[],[],[[],[]]] => [.,[.,[.,[[.,[.,.]],.]]]] => [5,4,6,3,2,1] => 0
[[],[],[],[[[]]]] => [.,[.,[.,[[[.,.],.],.]]]] => [4,5,6,3,2,1] => 0
[[],[],[[]],[],[]] => [.,[.,[[.,.],[.,[.,.]]]]] => [6,5,3,4,2,1] => 0
[[],[],[[]],[[]]] => [.,[.,[[.,.],[[.,.],.]]]] => [5,6,3,4,2,1] => 0
[[],[],[[],[]],[]] => [.,[.,[[.,[.,.]],[.,.]]]] => [6,4,3,5,2,1] => 0
[[],[],[[[]]],[]] => [.,[.,[[[.,.],.],[.,.]]]] => [6,3,4,5,2,1] => 0
[[],[],[[],[],[]]] => [.,[.,[[.,[.,[.,.]]],.]]] => [5,4,3,6,2,1] => 0
[[],[],[[],[[]]]] => [.,[.,[[.,[[.,.],.]],.]]] => [4,5,3,6,2,1] => 0
[[],[],[[[]],[]]] => [.,[.,[[[.,.],[.,.]],.]]] => [5,3,4,6,2,1] => 0
[[],[],[[[],[]]]] => [.,[.,[[[.,[.,.]],.],.]]] => [4,3,5,6,2,1] => 0
[[],[],[[[[]]]]] => [.,[.,[[[[.,.],.],.],.]]] => [3,4,5,6,2,1] => 0
[[],[[]],[],[],[]] => [.,[[.,.],[.,[.,[.,.]]]]] => [6,5,4,2,3,1] => 0
[[],[[]],[],[[]]] => [.,[[.,.],[.,[[.,.],.]]]] => [5,6,4,2,3,1] => 0
[[],[[]],[[]],[]] => [.,[[.,.],[[.,.],[.,.]]]] => [6,4,5,2,3,1] => 0
[[],[[]],[[],[]]] => [.,[[.,.],[[.,[.,.]],.]]] => [5,4,6,2,3,1] => 0
[[],[[]],[[[]]]] => [.,[[.,.],[[[.,.],.],.]]] => [4,5,6,2,3,1] => 0
[[],[[],[]],[],[]] => [.,[[.,[.,.]],[.,[.,.]]]] => [6,5,3,2,4,1] => 0
[[],[[[]]],[],[]] => [.,[[[.,.],.],[.,[.,.]]]] => [6,5,2,3,4,1] => 0
[[],[[],[]],[[]]] => [.,[[.,[.,.]],[[.,.],.]]] => [5,6,3,2,4,1] => 0
[[],[[[]]],[[]]] => [.,[[[.,.],.],[[.,.],.]]] => [5,6,2,3,4,1] => 0
[[],[[],[],[]],[]] => [.,[[.,[.,[.,.]]],[.,.]]] => [6,4,3,2,5,1] => 0
[[],[[],[[]]],[]] => [.,[[.,[[.,.],.]],[.,.]]] => [6,3,4,2,5,1] => 0
[[],[[[]],[]],[]] => [.,[[[.,.],[.,.]],[.,.]]] => [6,4,2,3,5,1] => 0
[[],[[[],[]]],[]] => [.,[[[.,[.,.]],.],[.,.]]] => [6,3,2,4,5,1] => 0
[[],[[[[]]]],[]] => [.,[[[[.,.],.],.],[.,.]]] => [6,2,3,4,5,1] => 0
[[],[[],[],[],[]]] => [.,[[.,[.,[.,[.,.]]]],.]] => [5,4,3,2,6,1] => 0
[[],[[],[],[[]]]] => [.,[[.,[.,[[.,.],.]]],.]] => [4,5,3,2,6,1] => 0
[[],[[],[[]],[]]] => [.,[[.,[[.,.],[.,.]]],.]] => [5,3,4,2,6,1] => 0
[[],[[],[[],[]]]] => [.,[[.,[[.,[.,.]],.]],.]] => [4,3,5,2,6,1] => 0
[[],[[],[[[]]]]] => [.,[[.,[[[.,.],.],.]],.]] => [3,4,5,2,6,1] => 0
[[],[[[]],[],[]]] => [.,[[[.,.],[.,[.,.]]],.]] => [5,4,2,3,6,1] => 0
[[],[[[]],[[]]]] => [.,[[[.,.],[[.,.],.]],.]] => [4,5,2,3,6,1] => 0
[[],[[[],[]],[]]] => [.,[[[.,[.,.]],[.,.]],.]] => [5,3,2,4,6,1] => 0
[[],[[[[]]],[]]] => [.,[[[[.,.],.],[.,.]],.]] => [5,2,3,4,6,1] => 0
>>> Load all 196 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of strong fixed points of a permutation.
$i$ is called a strong fixed point of $\pi$ if
1. $j < i$ implies $\pi_j < \pi_i$, and
2. $j > i$ implies $\pi_j > \pi_i$
This can be described as an occurrence of the mesh pattern ([1], {(0,1),(1,0)}), i.e., the upper left and the lower right quadrants are shaded, see [3].
The generating function for the joint-distribution (RLmin, LRmax, strong fixed points) has a continued fraction expression as given in [4, Lemma 3.2], for LRmax see St000314The number of left-to-right-maxima of a permutation..
$i$ is called a strong fixed point of $\pi$ if
1. $j < i$ implies $\pi_j < \pi_i$, and
2. $j > i$ implies $\pi_j > \pi_i$
This can be described as an occurrence of the mesh pattern ([1], {(0,1),(1,0)}), i.e., the upper left and the lower right quadrants are shaded, see [3].
The generating function for the joint-distribution (RLmin, LRmax, strong fixed points) has a continued fraction expression as given in [4, Lemma 3.2], for LRmax see St000314The number of left-to-right-maxima of a permutation..
Map
to 132-avoiding permutation
Description
Return a 132-avoiding permutation corresponding to a binary tree.
The linear extensions of a binary tree form an interval of the weak order called the Sylvester class of the tree. This permutation is the maximal element of the Sylvester class.
The linear extensions of a binary tree form an interval of the weak order called the Sylvester class of the tree. This permutation is the maximal element of the Sylvester class.
Map
to binary tree: right brother = right child
Description
Return a binary tree of size $n-1$ (where $n$ is the size of an ordered tree $t$) obtained from $t$ by the following recursive rule:
- if $x$ is the right brother of $y$ in $t$, then $x$ becomes the right child of $y$;
- if $x$ is the first child of $y$ in $t$, then $x$ becomes the left child of $y$,
and removing the root of $t$.
- if $x$ is the right brother of $y$ in $t$, then $x$ becomes the right child of $y$;
- if $x$ is the first child of $y$ in $t$, then $x$ becomes the left child of $y$,
and removing the root of $t$.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!