Identifier
-
Mp00275:
Graphs
—to edge-partition of connected components⟶
Integer partitions
St000228: Integer partitions ⟶ ℤ
Values
([],1) => [] => 0
([],2) => [] => 0
([(0,1)],2) => [1] => 1
([],3) => [] => 0
([(1,2)],3) => [1] => 1
([(0,2),(1,2)],3) => [2] => 2
([(0,1),(0,2),(1,2)],3) => [3] => 3
([],4) => [] => 0
([(2,3)],4) => [1] => 1
([(1,3),(2,3)],4) => [2] => 2
([(0,3),(1,3),(2,3)],4) => [3] => 3
([(0,3),(1,2)],4) => [1,1] => 2
([(0,3),(1,2),(2,3)],4) => [3] => 3
([(1,2),(1,3),(2,3)],4) => [3] => 3
([(0,3),(1,2),(1,3),(2,3)],4) => [4] => 4
([(0,2),(0,3),(1,2),(1,3)],4) => [4] => 4
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [5] => 5
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [6] => 6
([],5) => [] => 0
([(3,4)],5) => [1] => 1
([(2,4),(3,4)],5) => [2] => 2
([(1,4),(2,4),(3,4)],5) => [3] => 3
([(0,4),(1,4),(2,4),(3,4)],5) => [4] => 4
([(1,4),(2,3)],5) => [1,1] => 2
([(1,4),(2,3),(3,4)],5) => [3] => 3
([(0,1),(2,4),(3,4)],5) => [2,1] => 3
([(2,3),(2,4),(3,4)],5) => [3] => 3
([(0,4),(1,4),(2,3),(3,4)],5) => [4] => 4
([(1,4),(2,3),(2,4),(3,4)],5) => [4] => 4
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => [5] => 5
([(1,3),(1,4),(2,3),(2,4)],5) => [4] => 4
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => [5] => 5
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [5] => 5
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [5] => 5
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [6] => 6
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => [6] => 6
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [7] => 7
([(0,4),(1,3),(2,3),(2,4)],5) => [4] => 4
([(0,1),(2,3),(2,4),(3,4)],5) => [3,1] => 4
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => [5] => 5
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => [6] => 6
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [5] => 5
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [6] => 6
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => [7] => 7
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => [6] => 6
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [6] => 6
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [7] => 7
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [8] => 8
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => [7] => 7
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => [8] => 8
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [9] => 9
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [10] => 10
([],6) => [] => 0
([(4,5)],6) => [1] => 1
([(3,5),(4,5)],6) => [2] => 2
([(2,5),(3,5),(4,5)],6) => [3] => 3
([(1,5),(2,5),(3,5),(4,5)],6) => [4] => 4
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => [5] => 5
([(2,5),(3,4)],6) => [1,1] => 2
([(2,5),(3,4),(4,5)],6) => [3] => 3
([(1,2),(3,5),(4,5)],6) => [2,1] => 3
([(3,4),(3,5),(4,5)],6) => [3] => 3
([(1,5),(2,5),(3,4),(4,5)],6) => [4] => 4
([(0,1),(2,5),(3,5),(4,5)],6) => [3,1] => 4
([(2,5),(3,4),(3,5),(4,5)],6) => [4] => 4
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => [5] => 5
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [5] => 5
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [6] => 6
([(2,4),(2,5),(3,4),(3,5)],6) => [4] => 4
([(0,5),(1,5),(2,4),(3,4)],6) => [2,2] => 4
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [5] => 5
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [5] => 5
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5] => 5
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [5] => 5
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => [5] => 5
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [6] => 6
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6] => 6
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [6] => 6
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [7] => 7
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [6] => 6
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => [6] => 6
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [7] => 7
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [7] => 7
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [7] => 7
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [8] => 8
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [8] => 8
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [9] => 9
([(0,5),(1,4),(2,3)],6) => [1,1,1] => 3
([(1,5),(2,4),(3,4),(3,5)],6) => [4] => 4
([(0,1),(2,5),(3,4),(4,5)],6) => [3,1] => 4
([(1,2),(3,4),(3,5),(4,5)],6) => [3,1] => 4
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [5] => 5
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => [5] => 5
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => [4,1] => 5
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [6] => 6
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [6] => 6
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [7] => 7
([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => [5] => 5
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => [6] => 6
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [6] => 6
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => [6] => 6
>>> Load all 712 entries. <<<([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [6] => 6
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => [6] => 6
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [7] => 7
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [7] => 7
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => [7] => 7
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => [8] => 8
([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => [5] => 5
([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => [4,1] => 5
([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => [3,2] => 5
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => [6] => 6
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6) => [6] => 6
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6) => [6] => 6
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,1] => 6
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => [6] => 6
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6) => [7] => 7
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6) => [7] => 7
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [7] => 7
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [8] => 8
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6] => 6
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [7] => 7
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [7] => 7
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [8] => 8
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => [7] => 7
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6) => [8] => 8
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [8] => 8
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [8] => 8
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [8] => 8
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => [9] => 9
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [8] => 8
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [8] => 8
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [8] => 8
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [9] => 9
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [9] => 9
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [10] => 10
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => [7] => 7
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [7] => 7
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [8] => 8
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [8] => 8
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [9] => 9
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) => [6] => 6
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6) => [7] => 7
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => [7] => 7
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [7] => 7
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [7] => 7
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => [7] => 7
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [8] => 8
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [8] => 8
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [8] => 8
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [9] => 9
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6) => [8] => 8
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => [8] => 8
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [9] => 9
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [9] => 9
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [10] => 10
([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [9] => 9
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [9] => 9
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [9] => 9
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [10] => 10
([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => [9] => 9
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [9] => 9
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [10] => 10
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => [9] => 9
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [10] => 10
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [10] => 10
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => [3,3] => 6
([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6) => [7] => 7
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6) => [7] => 7
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6,1] => 7
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [8] => 8
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [8] => 8
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [9] => 9
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6) => [8] => 8
([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => [9] => 9
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [9] => 9
([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [9] => 9
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [9] => 9
([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [10] => 10
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [10] => 10
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6) => [8] => 8
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [8] => 8
([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [9] => 9
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [10] => 10
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6) => [9] => 9
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [10] => 10
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [10] => 10
([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [10] => 10
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [10] => 10
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [10] => 10
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [10] => 10
([],7) => [] => 0
([(5,6)],7) => [1] => 1
([(4,6),(5,6)],7) => [2] => 2
([(3,6),(4,6),(5,6)],7) => [3] => 3
([(2,6),(3,6),(4,6),(5,6)],7) => [4] => 4
([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => [5] => 5
([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => [6] => 6
([(3,6),(4,5)],7) => [1,1] => 2
([(3,6),(4,5),(5,6)],7) => [3] => 3
([(2,3),(4,6),(5,6)],7) => [2,1] => 3
([(4,5),(4,6),(5,6)],7) => [3] => 3
([(2,6),(3,6),(4,5),(5,6)],7) => [4] => 4
([(1,2),(3,6),(4,6),(5,6)],7) => [3,1] => 4
([(3,6),(4,5),(4,6),(5,6)],7) => [4] => 4
([(1,6),(2,6),(3,6),(4,5),(5,6)],7) => [5] => 5
([(0,1),(2,6),(3,6),(4,6),(5,6)],7) => [4,1] => 5
([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [5] => 5
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => [6] => 6
([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [6] => 6
([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [7] => 7
([(3,5),(3,6),(4,5),(4,6)],7) => [4] => 4
([(1,6),(2,6),(3,5),(4,5)],7) => [2,2] => 4
([(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [5] => 5
([(1,6),(2,6),(3,4),(4,5),(5,6)],7) => [5] => 5
([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => [3,2] => 5
([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5] => 5
([(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [5] => 5
([(1,6),(2,6),(3,5),(4,5),(5,6)],7) => [5] => 5
([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [6] => 6
([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => [6] => 6
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6] => 6
([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [6] => 6
([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => [6] => 6
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [7] => 7
([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7] => 7
([(0,6),(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [7] => 7
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 8
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [6] => 6
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => [6] => 6
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => [6] => 6
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [7] => 7
([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => [7] => 7
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7] => 7
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7] => 7
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6),(5,6)],7) => [7] => 7
([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [8] => 8
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 8
([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 8
([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 9
([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [8] => 8
([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [8] => 8
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [9] => 9
([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 9
([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 9
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [10] => 10
([(1,6),(2,5),(3,4)],7) => [1,1,1] => 3
([(2,6),(3,5),(4,5),(4,6)],7) => [4] => 4
([(1,2),(3,6),(4,5),(5,6)],7) => [3,1] => 4
([(0,3),(1,2),(4,6),(5,6)],7) => [2,1,1] => 4
([(2,3),(4,5),(4,6),(5,6)],7) => [3,1] => 4
([(1,6),(2,5),(3,4),(4,6),(5,6)],7) => [5] => 5
([(0,1),(2,6),(3,6),(4,5),(5,6)],7) => [4,1] => 5
([(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [5] => 5
([(1,2),(3,6),(4,5),(4,6),(5,6)],7) => [4,1] => 5
([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => [6] => 6
([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [6] => 6
([(0,1),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [5,1] => 6
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [6] => 6
([(0,6),(1,6),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => [7] => 7
([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [7] => 7
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [8] => 8
([(2,5),(2,6),(3,4),(3,6),(4,5)],7) => [5] => 5
([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => [6] => 6
([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7) => [6] => 6
([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [6] => 6
([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7) => [6] => 6
([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [6] => 6
([(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => [6] => 6
([(0,6),(1,6),(2,5),(3,4),(3,6),(4,5),(5,6)],7) => [7] => 7
([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [7] => 7
([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6),(5,6)],7) => [7] => 7
([(0,6),(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7) => [7] => 7
([(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7] => 7
([(0,6),(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => [7] => 7
([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [7] => 7
([(0,6),(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [8] => 8
([(0,6),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 8
([(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 8
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 9
([(1,6),(2,5),(3,4),(3,5),(4,6)],7) => [5] => 5
([(1,2),(3,5),(3,6),(4,5),(4,6)],7) => [4,1] => 5
([(0,6),(1,5),(2,4),(3,4),(5,6)],7) => [3,2] => 5
([(1,6),(2,6),(3,4),(3,5),(4,5)],7) => [3,2] => 5
([(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7) => [6] => 6
([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7) => [6] => 6
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [5,1] => 6
([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6)],7) => [6] => 6
([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7) => [4,2] => 6
([(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => [6] => 6
([(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1] => 6
([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => [6] => 6
([(0,1),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [5,1] => 6
([(1,5),(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [6] => 6
([(0,5),(1,6),(2,3),(2,4),(3,6),(4,6),(5,6)],7) => [7] => 7
([(1,4),(1,5),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => [7] => 7
([(0,5),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6)],7) => [7] => 7
([(1,4),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [7] => 7
([(0,6),(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => [7] => 7
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1] => 7
([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [7] => 7
([(0,6),(1,5),(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [7] => 7
([(0,6),(1,4),(1,5),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => [8] => 8
([(0,4),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [8] => 8
([(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 8
([(0,6),(1,5),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 8
([(0,6),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 9
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5)],7) => [3,3] => 6
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6] => 6
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7) => [7] => 7
([(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [7] => 7
([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7] => 7
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [8] => 8
([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 8
([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 9
([(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => [7] => 7
([(0,6),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6)],7) => [7] => 7
([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [8] => 8
([(1,4),(1,6),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => [8] => 8
([(0,6),(1,4),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => [8] => 8
([(0,6),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => [8] => 8
([(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 8
([(0,6),(1,5),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 8
([(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [8] => 8
([(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 8
([(0,6),(1,5),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 8
([(0,6),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 8
([(0,6),(1,4),(1,6),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => [9] => 9
([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 9
([(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 9
([(0,6),(1,5),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 9
([(0,6),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 9
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7) => [7] => 7
([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [6,1] => 7
([(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6)],7) => [7] => 7
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6)],7) => [8] => 8
([(0,5),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [8] => 8
([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => [8] => 8
([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7,1] => 8
([(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6),(5,6)],7) => [8] => 8
([(0,1),(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [9] => 9
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [9] => 9
([(0,5),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 9
([(0,1),(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6)],7) => [8] => 8
([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [8] => 8
([(0,6),(1,6),(2,3),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [8] => 8
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 8
([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 8
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [9] => 9
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [9] => 9
([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 9
([(0,6),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 9
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [9] => 9
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6)],7) => [9] => 9
([(0,1),(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [9] => 9
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6)],7) => [10] => 10
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,1),(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [9] => 9
([(0,6),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [9] => 9
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [10] => 10
([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,6),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => [7] => 7
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [7] => 7
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => [8] => 8
([(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [8] => 8
([(0,6),(1,6),(2,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => [8] => 8
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [8] => 8
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [9] => 9
([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [9] => 9
([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [10] => 10
([(1,5),(1,6),(2,3),(2,4),(3,6),(4,5)],7) => [6] => 6
([(1,4),(1,6),(2,3),(2,6),(3,5),(4,5),(5,6)],7) => [7] => 7
([(0,6),(1,2),(1,3),(2,5),(3,4),(4,6),(5,6)],7) => [7] => 7
([(1,6),(2,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => [7] => 7
([(1,2),(1,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [7] => 7
([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6),(5,6)],7) => [7] => 7
([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [7] => 7
([(1,6),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => [7] => 7
([(0,4),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => [7] => 7
([(0,6),(1,4),(1,6),(2,3),(2,6),(3,5),(4,5),(5,6)],7) => [8] => 8
([(1,2),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 8
([(0,6),(1,2),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 8
([(0,6),(1,4),(2,3),(2,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 8
([(0,6),(1,2),(1,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [8] => 8
([(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [8] => 8
([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [8] => 8
([(0,6),(1,4),(2,3),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 8
([(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [8] => 8
([(0,6),(1,2),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 9
([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [9] => 9
([(0,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [9] => 9
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [9] => 9
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [10] => 10
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7) => [4,2] => 6
([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7) => [7] => 7
([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(5,6)],7) => [5,2] => 7
([(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(5,6)],7) => [7] => 7
([(0,6),(1,6),(2,3),(2,4),(3,5),(4,5),(5,6)],7) => [7] => 7
([(0,4),(1,4),(2,5),(3,5),(3,6),(4,6),(5,6)],7) => [7] => 7
([(0,4),(0,5),(1,2),(1,3),(2,6),(3,6),(4,6),(5,6)],7) => [8] => 8
([(0,4),(1,4),(1,6),(2,5),(2,6),(3,5),(3,6),(5,6)],7) => [8] => 8
([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 8
([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [8] => 8
([(0,5),(1,4),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [8] => 8
([(0,1),(0,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 9
([(0,5),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [9] => 9
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [10] => 10
([(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7) => [8] => 8
([(0,6),(1,5),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7) => [8] => 8
([(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => [8] => 8
([(0,6),(1,4),(1,5),(2,3),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [9] => 9
([(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [9] => 9
([(0,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [9] => 9
([(0,6),(1,4),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6)],7) => [9] => 9
([(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 9
([(0,6),(1,5),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 9
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [10] => 10
([(0,6),(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,6),(1,5),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,6),(1,5),(1,6),(2,3),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,1),(0,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => [8] => 8
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5)],7) => [8] => 8
([(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(5,6)],7) => [8] => 8
([(0,1),(0,6),(1,5),(2,4),(2,6),(3,4),(3,6),(4,5),(5,6)],7) => [9] => 9
([(0,5),(1,4),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6)],7) => [9] => 9
([(0,5),(1,4),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(5,6)],7) => [9] => 9
([(0,4),(0,6),(1,4),(1,6),(2,5),(2,6),(3,4),(3,5),(5,6)],7) => [9] => 9
([(0,6),(1,3),(1,5),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => [9] => 9
([(0,3),(1,5),(1,6),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => [9] => 9
([(0,1),(0,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 9
([(0,5),(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [9] => 9
([(0,3),(0,6),(1,3),(1,6),(2,4),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,3),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,5),(1,5),(1,6),(2,3),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [10] => 10
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [10] => 10
([(0,6),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => [9] => 9
([(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 9
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 9
([(0,6),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5)],7) => [9] => 9
([(1,5),(1,6),(2,3),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 9
([(0,5),(1,3),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 9
([(0,6),(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7) => [9] => 9
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(5,6)],7) => [9] => 9
([(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 9
([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [9] => 9
([(0,6),(1,5),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 9
([(0,6),(1,5),(1,6),(2,3),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [10] => 10
([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5)],7) => [9] => 9
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [9] => 9
([(0,6),(1,5),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => [9] => 9
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [9] => 9
([(0,6),(1,5),(2,4),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 9
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(5,6)],7) => [10] => 10
([(0,5),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7) => [10] => 10
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => [10] => 10
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,5),(3,4),(3,6),(4,5),(4,6)],7) => [10] => 10
([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => [9] => 9
([(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7) => [10] => 10
([(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [10] => 10
([(0,6),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [10] => 10
([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => [10] => 10
([(0,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7) => [10] => 10
([(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7) => [10] => 10
([(0,5),(0,6),(1,3),(1,6),(2,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,6),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [10] => 10
([(0,6),(1,4),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [10] => 10
([(0,4),(0,5),(1,4),(1,5),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [10] => 10
([(0,1),(2,5),(3,4),(4,6),(5,6)],7) => [4,1] => 5
([(0,3),(1,2),(4,5),(4,6),(5,6)],7) => [3,1,1] => 5
([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => [6] => 6
([(0,1),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => [5,1] => 6
([(0,5),(1,4),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => [7] => 7
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [6,1] => 7
([(0,5),(1,4),(1,6),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => [8] => 8
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => [9] => 9
([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => [6] => 6
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5)],7) => [5,1] => 6
([(0,6),(1,5),(2,3),(2,4),(3,4),(5,6)],7) => [3,3] => 6
([(0,6),(1,4),(2,3),(2,6),(3,5),(4,5),(5,6)],7) => [7] => 7
([(0,4),(1,3),(2,5),(2,6),(3,5),(4,6),(5,6)],7) => [7] => 7
([(0,1),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [6,1] => 7
([(0,5),(1,2),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => [7] => 7
([(0,6),(1,4),(2,3),(2,5),(3,5),(4,6),(5,6)],7) => [7] => 7
([(0,5),(1,4),(1,5),(2,3),(2,6),(3,6),(4,6)],7) => [7] => 7
([(0,5),(1,4),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => [7] => 7
([(0,4),(1,2),(1,6),(2,5),(3,5),(3,6),(4,6),(5,6)],7) => [8] => 8
([(0,5),(1,2),(1,6),(2,6),(3,4),(3,6),(4,5),(5,6)],7) => [8] => 8
([(0,4),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => [8] => 8
([(0,1),(0,5),(1,4),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => [8] => 8
([(0,4),(1,3),(2,5),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 8
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [7,1] => 8
([(0,5),(1,4),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 8
([(0,1),(0,6),(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [9] => 9
([(0,3),(1,5),(1,6),(2,4),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 9
([(0,5),(1,2),(1,6),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 9
([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7) => [3,3] => 6
([(1,3),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => [7] => 7
([(0,1),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1] => 7
([(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7) => [7] => 7
([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7) => [4,3] => 7
([(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1] => 7
([(0,6),(1,2),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [8] => 8
([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7) => [8] => 8
([(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [8] => 8
([(1,2),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 8
([(0,1),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7,1] => 8
([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [9] => 9
([(0,6),(1,2),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 9
([(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 9
([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,3),(0,6),(1,2),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => [8] => 8
([(0,5),(1,3),(1,6),(2,4),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [9] => 9
([(0,5),(1,4),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [9] => 9
([(0,1),(0,6),(1,4),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => [9] => 9
([(0,4),(1,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 9
([(0,5),(1,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 9
([(0,3),(1,5),(1,6),(2,4),(2,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 9
([(0,4),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 9
([(0,6),(1,2),(1,6),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [9] => 9
([(0,3),(0,6),(1,2),(1,6),(2,5),(3,5),(4,5),(4,6),(5,6)],7) => [9] => 9
([(0,4),(0,6),(1,3),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [10] => 10
([(0,4),(1,5),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,5),(1,4),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,1),(0,6),(1,5),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,6),(1,5),(2,3),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => [8] => 8
([(1,5),(1,6),(2,3),(2,4),(3,4),(3,6),(4,5),(5,6)],7) => [8] => 8
([(0,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [9] => 9
([(0,6),(1,3),(1,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [9] => 9
([(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [9] => 9
([(0,6),(1,2),(1,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [9] => 9
([(1,4),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 9
([(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 9
([(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 9
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [10] => 10
([(0,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,6),(1,3),(1,6),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(1,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,6),(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,1),(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6)],7) => [8] => 8
([(0,2),(1,5),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [9] => 9
([(0,1),(0,6),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(5,6)],7) => [9] => 9
([(0,5),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [9] => 9
([(0,5),(1,2),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 9
([(0,1),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8,1] => 9
([(0,6),(1,2),(1,5),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 9
([(0,1),(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6),(5,6)],7) => [9] => 9
([(0,1),(0,6),(1,6),(2,3),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,2),(1,5),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,5),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [10] => 10
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => [10] => 10
([(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [10] => 10
([(0,1),(0,6),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [10] => 10
([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [10] => 10
([(0,5),(0,6),(1,2),(1,4),(2,3),(3,5),(4,6)],7) => [7] => 7
([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7) => [8] => 8
([(0,3),(1,4),(1,5),(2,4),(2,6),(3,5),(4,6),(5,6)],7) => [8] => 8
([(0,1),(0,3),(1,2),(2,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 8
([(0,3),(0,4),(1,2),(1,6),(2,5),(3,5),(4,6),(5,6)],7) => [8] => 8
([(0,6),(1,2),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [8] => 8
([(0,6),(1,2),(1,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => [8] => 8
([(0,3),(1,2),(1,5),(2,4),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 8
([(0,6),(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5)],7) => [8] => 8
([(0,6),(1,2),(1,6),(2,4),(3,4),(3,5),(4,5),(5,6)],7) => [8] => 8
([(0,1),(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [9] => 9
([(0,5),(1,2),(1,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [9] => 9
([(0,2),(1,5),(1,6),(2,4),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [9] => 9
([(0,1),(0,2),(1,6),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 9
([(0,3),(0,6),(1,2),(1,6),(2,4),(3,5),(4,5),(4,6),(5,6)],7) => [9] => 9
([(0,5),(1,3),(1,5),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [9] => 9
([(0,5),(1,3),(1,4),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [9] => 9
([(0,1),(0,5),(1,4),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [9] => 9
([(0,5),(1,4),(2,3),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [9] => 9
([(0,1),(0,6),(1,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,4),(0,6),(1,3),(1,6),(2,3),(2,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,5),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [10] => 10
([(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => [8] => 8
([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5)],7) => [8] => 8
([(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [8] => 8
([(0,6),(1,4),(1,5),(2,3),(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [9] => 9
([(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [9] => 9
([(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [9] => 9
([(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [10] => 10
([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [10] => 10
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,5),(3,4),(3,6),(4,5),(5,6)],7) => [10] => 10
([(0,6),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(3,6),(4,6),(5,6)],7) => [10] => 10
([(0,4),(1,5),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,6),(5,6)],7) => [10] => 10
([(0,5),(0,6),(1,3),(1,5),(2,3),(2,4),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5)],7) => [10] => 10
([(0,6),(1,5),(2,3),(2,4),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5)],7) => [9] => 9
([(1,2),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [10] => 10
([(0,6),(1,4),(1,5),(2,3),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,4),(0,6),(1,3),(1,5),(2,5),(2,6),(3,4),(3,6),(4,5)],7) => [9] => 9
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(4,5)],7) => [9] => 9
([(0,4),(0,5),(1,3),(1,6),(2,3),(2,5),(2,6),(3,4),(4,6),(5,6)],7) => [10] => 10
([(0,4),(0,5),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6)],7) => [10] => 10
([(0,5),(1,2),(1,4),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [10] => 10
([(0,6),(1,3),(1,4),(2,3),(2,5),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,5),(0,6),(1,2),(1,4),(2,3),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(5,6)],7) => [10] => 10
([(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,6),(1,5),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,6),(1,4),(1,5),(2,3),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,5),(0,6),(1,4),(1,5),(2,3),(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [10] => 10
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,6),(4,6),(5,6)],7) => [8] => 8
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,6),(4,6),(5,6)],7) => [8] => 8
([(0,1),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [7,1] => 8
([(0,1),(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => [9] => 9
([(0,2),(1,4),(1,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [9] => 9
([(0,1),(0,6),(1,6),(2,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => [9] => 9
([(0,1),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [8,1] => 9
([(0,1),(0,6),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,1),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [10] => 10
([(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => [9] => 9
([(0,3),(0,4),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => [9] => 9
([(0,6),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,6),(5,6)],7) => [9] => 9
([(0,1),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => [9] => 9
([(0,3),(0,4),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5)],7) => [9] => 9
([(0,3),(0,4),(1,5),(1,6),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7) => [10] => 10
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,6),(3,6),(4,6),(5,6)],7) => [10] => 10
([(0,3),(0,5),(1,4),(1,6),(2,3),(2,5),(2,6),(3,4),(4,6),(5,6)],7) => [10] => 10
([(0,1),(0,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [10] => 10
([(0,4),(1,2),(1,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,1),(0,6),(1,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,1),(0,6),(1,5),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,3),(0,4),(1,2),(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => [9] => 9
([(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5)],7) => [9] => 9
([(0,4),(0,6),(1,3),(1,5),(2,5),(2,6),(3,4),(3,5),(4,6)],7) => [9] => 9
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,6)],7) => [9] => 9
([(0,1),(0,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [10] => 10
([(0,3),(0,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(4,6),(5,6)],7) => [10] => 10
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,4),(0,5),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(5,6)],7) => [10] => 10
([(0,1),(1,4),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,1),(0,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(3,4),(3,6),(5,6)],7) => [10] => 10
([(0,6),(1,4),(1,5),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => [10] => 10
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => [10] => 10
([(0,5),(0,6),(1,2),(1,5),(2,3),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,4),(1,3),(1,6),(2,3),(2,5),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,4),(1,3),(1,6),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => [10] => 10
([(0,3),(0,6),(1,3),(1,5),(2,4),(2,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,1),(0,6),(1,5),(2,3),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,6),(1,3),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,6),(1,4),(1,6),(2,3),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,1),(0,5),(1,4),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => [10] => 10
([(0,1),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,1),(0,5),(1,5),(2,3),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,2),(1,5),(1,6),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,1),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9,1] => 10
([(0,1),(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,6),(4,6)],7) => [10] => 10
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(3,4),(3,6),(4,5),(5,6)],7) => [10] => 10
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(5,6)],7) => [10] => 10
([(0,4),(0,6),(1,3),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,4),(1,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => [10] => 10
([(0,6),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,5),(0,6),(1,2),(1,3),(2,3),(4,5),(4,6)],7) => [4,3] => 7
([(0,3),(1,3),(1,4),(2,5),(2,6),(4,5),(4,6),(5,6)],7) => [8] => 8
([(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,2] => 8
([(0,6),(1,2),(1,4),(2,4),(3,5),(3,6),(4,5),(5,6)],7) => [8] => 8
([(0,1),(0,2),(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,3] => 8
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5)],7) => [8] => 8
([(0,1),(0,2),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [9] => 9
([(0,2),(1,2),(1,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 9
([(0,1),(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [9] => 9
([(0,5),(1,3),(1,4),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [9] => 9
([(0,5),(1,5),(2,3),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [9] => 9
([(0,1),(0,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,3),(0,6),(1,3),(1,6),(2,4),(2,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,5),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [10] => 10
([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(4,5)],7) => [10] => 10
([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6)],7) => [9] => 9
([(0,2),(0,6),(1,2),(1,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [9] => 9
([(0,4),(0,6),(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5)],7) => [9] => 9
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,6),(3,6),(4,6),(5,6)],7) => [10] => 10
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [10] => 10
([(0,4),(0,5),(1,2),(1,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [10] => 10
([(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,6),(3,5),(4,5),(4,6)],7) => [10] => 10
([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(4,5)],7) => [10] => 10
([(0,4),(0,5),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5)],7) => [9] => 9
([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,3] => 9
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 10
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [10] => 10
([(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,4),(3,6),(4,5),(5,6)],7) => [10] => 10
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Generating function
click to show known generating functions
Search the OEIS for these generating functions
Search the Online Encyclopedia of Integer
Sequences for the coefficients of a few of the
first generating functions, in the case at hand:
1,1 1,1,1,1 1,1,2,3,2,1,1 1,1,2,4,6,6,6,4,2,1,1
$F_{1} = 1$
$F_{2} = 1 + q$
$F_{3} = 1 + q + q^{2} + q^{3}$
$F_{4} = 1 + q + 2\ q^{2} + 3\ q^{3} + 2\ q^{4} + q^{5} + q^{6}$
$F_{5} = 1 + q + 2\ q^{2} + 4\ q^{3} + 6\ q^{4} + 6\ q^{5} + 6\ q^{6} + 4\ q^{7} + 2\ q^{8} + q^{9} + q^{10}$
Description
The size of a partition.
This statistic is the constant statistic of the level sets.
This statistic is the constant statistic of the level sets.
Map
to edge-partition of connected components
Description
Sends a graph to the partition recording the number of edges in its connected components.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!